
Tornado Web Services Guide
Version 2.0

Create Documents and Reports Fast from Templates

Tornado Web Services Guide

Copyrights

© 2015 Docmosis Pty Ltd

This document and all human-readable contents of the Docmosis distribution are the
copyright of Systemic Pty Ltd. You may not reproduce or distribute any of this material
without the written permission of Systemic.

http://www.docmosis.com

The placeholder image provided in the Docmosis distribution is intended for use in
document templates and is not restricted by the terms above. You may use the image
for the development of document templates and distribute it as required.

Trademarks

Microsoft Word and MS Windows are registered trademarks of the Microsoft
Corporation.

http://office.microsoft.com/en-us/default.aspx

http://www.microsoft.com/windows/

Adobe® PDF is a trademark of the Adobe Corporation.

http://www.adobe.com/products/acrobat/adobepdf.html

OpenOffice is a trademark of OpenOffice.org.

http://www.openoffice.org

LibreOffice is a trademark of LibreOffice contributors and/or their affiliates

http://www.libreoffice.org

Page ii Tornado Web Services Guide
Version 2.0

Oct 2015

Contents

1 INTRODUCTION..5

1.1 Feature Summary..5

1.2 Quick Overview...5

1.3 Important Reading...6

1.4 Character Encoding..6

1.5 Fonts in your templates..6

1.6 Dynamic and Stock Images..6

1.7 Document Storage...6

1.8 Template Merging..7

1.9 Production vs Development Mode...7

2 THE DEVELOPER API..8

2.1 Fundamentals..8

2.2 Response Codes and Messages...8

2.3 The Render Service..8

2.3.1 Service URL..9

2.3.2 Content-Type...9

2.3.3 Request Parameters...9

2.3.4 StoreTo Options...11

2.3.5 Including Dynamic Image Data..12

2.3.6 Including "Stock" Image Data..12

2.3.7 Response Messages..13

2.3.8 Response Header..14

2.4 The Get Template Structure Service..14

2.4.1 Service URL..14

2.4.2 Content-Type...14

2.4.3 Request Parameters..14

2.4.4 Response Messages..14

Tornado Web Services Guide Page iii
Version 2.0
Oct 2015

Preface

Welcome to the Tornado Web Services Guide. This manual is intended for document
application developers and integrators who need to produce richly formatted document
and reports from applications.

The Tornado Web Services Guide provides information for making the most of Docmosis
Tornado.

Related Reading

Please refer to the Docmosis Template Guide for information about how to create and
maintain templates.

Please refer to the Docmosis Developer Guide for information about in-depth concepts of
using Docmosis as a developer.

Page 4 Tornado Web Services Guide
Version 2.0

Oct 2015

1 Introduction

Docmosis Tornado provides an easy way to generate sophisticated and dynamic documents
from virtually any application. The combination of web services and the Docmosis engine
provides a great capability that can be integrated surprisingly fast.

Whether you are developing a large enterprise application or a trend setting mobile
application, Tornado allows you to produce great documents based on merging your
templates and data.

1.1 Feature Summary
Tornado services are:

1. Template Driven - you can change your templates any time with a word processor,
upload and they will take effect immediately - wherever your application is running.

2. Accessible - as long as you have network connectivity you can render your
documents using just about any development environment and delivered to multiple
destinations.

3. Secure – Tornado server runs where you determine it should run. It can be exposed
only within your network as you determine. Tornado also provides access control to
the configuration console and to the web service end-points.

4. Powerful - the Docmosis engine provides amazing template abilities and output
formats.

5. Simple API - calls to the service are made using HTTP form posting. The render
service is the only service that need be called.

1.2 Quick Overview
Using Tornado is easy:

1. Install and configure

2. Place your templates where you have configured Tornado to find them

3. Use the Tornado web interface to rapidly prototype your documents

4. Use the code samples to invoke document generation via code

Since you control the Tornado environment, you simply need to place your templates into
the folder configured. Tornado will find them dynamically and will pick up changes on the
fly.

The remainder of this document detail the developer API.

Tornado Web Services Guide Page 5
Version 2.0
Oct 2015

1.3 Important Reading
The Docmosis Template Guide is essential reading to making the most of Tornado. It
provides fundamental details about how to create templates.

The goal as a developer is to ensure the data you send to Tornado matches the data
required by the template.

1.4 Character Encoding
All data passed to Tornado should be UTF-8 encoded. This provides a great balance
between flexibility and compatibility. If you pass data containing special characters, then
you will need to ensure you are UTF-8 encoding it, otherwise you'll get strange
characters in your resulting documents.

1.5 Fonts in your templates
Your templates will need to use available fonts. If you use fonts which are not installed
on the server where Tornado runs, then you may see unexpected font substitutions in
your PDF documents or inaccurate page references when using indexes or tables of
content.

1.6 Dynamic and Stock Images
Tornado allows you to stream image data with which your templates can be populated.
This is done by Base64 encoding your image data and putting it in your data like any
other textual information. Your data may also “reference” images that are located in the
configured templates area. Tornado will read the images in so they don’t need to be
streamed each time.

1.7 Document Storage
Tornado provides the ability to send files to:

a) The local file system

b) Streamed back to the calling application

c) Email destinations

Documents can be rendered directly into these storage locations using the render service.

Page 6 Tornado Web Services Guide
Version 2.0

Oct 2015

1.8 Template Merging
The render process is powerful enough to merge multiple templates into a single set of
documents. Templates may reference other templates dynamically (via data) or statically
(in the template itself). This provides an ideal mechanism for inserting common content
across multiple templates. Please see the Docmosis Template Guide for information
about how to reference one template from another.

1.9 Production vs Development Mode
Tornado provides the option to operate in a forgiving manner (development mode) or in a
very strict manner (production mode). The intention is that in development mode you are
allowed to produce documents that contain errors, helping you to locate the error and
make the necessary adjustments.

In production mode, no document with detected errors will be produced. Instead the
operation will fail with diagnostic information so you can be assured that documents will
never be delivered that have fundamental errors in processing.

The mode is chosen on a render by render basis by passing the devMode parameter to
the render call.

Tornado Web Services Guide Page 7
Version 2.0
Oct 2015

2 The Developer API

2.1 Fundamentals
Tornado offers a REST-based API. You can find more information about REST here
WikiPedia REST. All calls to Tornado are made using HTTP POST requests. You can write
code to call the API directly or use a third-party toolset like the Java Jersey Client
(http://jersey.java.net) creating your own requests. There is example code in
various languages available on the Docmosis web site.

2.2 Response Codes and Messages
For every call you make to Tornado, you should first check the response code to
determine whether the call succeeded or failed. Once you know whether the call
succeeded or not, you can then choose whether or not to check for further information in
the response body.

Tornado returns status codes as follows:

Status Code Definition

200 Successful operation

400 Your Docmosis request is not valid

500 A server error has occurred

404 Invalid URL (not found)

Other 4** and 5** response codes may also occur. You should always confirm that you
received a 200 response before assuming success.

Tornado also returns information about the result in JSON or XML format as follows:

Field Definition

succeeded "true" or "false".

shortMsg A short message about the result. In the case of an error this will be
a short error message. It may be blank in the case of a successful
operation.

longMsg A more descriptive message about the result. In the case of an error
this will be a long error message. It may be blank.

Each call may also return additional information in the response information as indicated
in the sections to follow.

2.3 The Render Service

Page 8 Tornado Web Services Guide
Version 2.0

Oct 2015

http://en.wikipedia.org/wiki/Representational_State_Transfer

The render service is the document-production work-horse, and it is typically the only
service you need to invoke from your application. You invoke the render service with
data and instructions indicating which template to use, what formats you require, where
to send the result and more.

Render works in production mode by default, meaning that any errors in the template or
data supply are considered fatal and the render call will fail. You may override this with
the devMode flag.

2.3.1 Service URL
/render

2.3.2 Content-Type

There are three ways to invoke the render service based on content-type. Set the
content-type in your request as follows:

Content Type Description

Multipart/form-data Parameters are passed as separate form parameters. The data parameter may
be either XML or JSON.

application/xml A single XML document string provides instructions and data (see examples
below).

Application/json A single JSON document string provides instructions and data (see examples
below).

Choose the one that makes it easiest for you to work with.

2.3.3 Request Parameters

There are many parameters to control the render method, but most are optional. Please
see the details in the table below for each parameter.

As an example, using the application/json content type a simple JSON format
request could look like this:

{"templateName":"template1.doc",
 "outputName":"result.pdf",
 "accessKey":"xxx-your-access-key-xxx",
 "data":{"title":"Company Profile Report", "scope":"Initial Scoping
Report"}}

You can see the data and instructions are combined into a single JSON structure. The
same request in XML format would look like:

<?xml version="1.0" encoding="utf-8"?>
<render templateName="template1.doc" outputName="result.pdf"
 accessKey=" xxx-your-access-key-xxx ">
 <data>

<report title="Company Profile Report" scope="Initial Scoping Re-
port"/>
 </data>

Tornado Web Services Guide Page 9
Version 2.0
Oct 2015

</render>

The table below details the settings and options for the render request.

Parameter
(bold=mandatory)

Description Default

accessKey Your unique access key you were given when you created your account.
templateName The name of the template to use. Template must have been uploaded

previously with the template upload request.
outputName The name to give the rendered document. If no format is specified (see

outputFormat), the format of the resulting document is derived from
the file extension in this name. For example "resume1.pdf" instructs
Tornado to generate a PDF format document. The name may be
supplied without an extension (eg "resume1") and the outputFormat
parameter will specify the format(s) to return.

outputFormat The format(s) of the rendered document. ; delimited. Multiple formats
imply a zip file and ouputName will have .zip appended as required. Files
inside zip will be named using outputName and will have the format-
specific extension appended as required. Valid options are pdf, doc, odt,
rtf, html, txt.

storeTo Specify where to send the resulting document. If no specification is given,
"stream" is assumed and the result will be streamed back to the
requester, otherwise the ; delimited list of destinations will receive the
result.

Valid options are stream, mailto, file

See section 2.3.4 StoreTo Options for more details

stream

compressSingleFormat Optionally choose to zip the result when a single output document is
produced. The zip archive will contain a document in the specified format
with a name based on outputName + outputFormat. The resulting zip
file name will be the outputName with the .zip extension appended as
required. This option is ignored if more than one outputFormat is
specified. Positive values are "y", "yes" and "true" (case-insensitive).

false

devMode Document production can run in development and production respectively.
If set to "y", "yes" or "true" this operation will work in "dev" mode,
meaning that if something is incorrect in the template, data or instructions
Tornado will do it's best to produce a document. Such a document may
contain errors such as missing images and data, and wherever possible,
Tornado will highlight problems to indicate the failure.

In production mode errors in document rendering will result in a failure
result only and no document will be produced. The production mode is to
ensure that a bad document is never produced/delivered to a recipient.
The default mode is production (that is, dev mode is off).

false

data The Data to populate the document with. This may be etiher XML or
JSON format. The type of data given determines the format of the
response.

mailSubject If sending email, this will be used as the subject line of the email.
mailBodyHtml If sending email, this will be used as the body of the email and will be sent

as html format.
mailBodyText If sending email, this will be used as the body of the email and will be sent

as text.
mailNoZipAttachments If this is set to true, any email attachments will be attached as individual

files rather than as a single zip (when multiple formats are being used).
false

requestId Any string you would like to use to identify this job. This string will be
returned in responses.

stylesInText If set to "y","yes" or "true", your data will be parsed looking for html-like
mark-up. The following mark-up is supported:

false

Page 10 Tornado Web Services Guide
Version 2.0

Oct 2015

Parameter
(bold=mandatory)

Description Default

- Bold eg "this is bold"
- Italics eg "this is <i>italics</i>"
- Underline eg "this is <i>underline</i>"
- Cell Colouring eg "<bgcolor="#ff0000"/>This cell is now red.

The bgcolor tag must be at the beginning of your field data and the
template field must be inside a table-cell to take effect. More information
is available in the Docmosis Developer Guide.

passwordProtect If specified, this parameter will set the password for PDF and DOC files
created by the render. The password is used when opening the
document. Use with care as setting the password means the recipient
must know the password to read the document. Note: pdfArchiveMode
will disable any password setting for PDF documents.

pdfArchiveMode Create pdf documents in PDF-A mode for long term storage. Note this
setting disables certain PDF features such as password protection and
external hyperlinks.

false

pdfWatermark If specified, PDF documents will have the specified text added as a
watermark across the document.

pdfTagged If specified, the PDF documents will have extra information inserted to
assist with low-vision readability tools. The alt-text for images in
particular becomes “readable”

false

2.3.4 StoreTo Options

Tornado can render to several destinations at once, and optionally send different formats
for delivery to each destination. As a simple example:

stream:pdf;mailto:doc

which indicates a PDF document should be streamed back to the caller, and a DOC
document should be emailed.

By default, all destinations will receive all formats specified by outputFormat (or implied
by the outputName if outputFormat not specified). Each destination may override the
defaults settings and specify what to receive using this style "stream:<format>" eg
"stream:pdf". If you wish to specify multiple email addresses, use multiple mailto:
directives. Note that email behaviour is also determined by other parameters in the
render call such as subject and body message.

The following table describes the available storage options.

Destination Examples

stream Stream the document back to the caller

mailto eMail the document to the specfied address

file Store the document in the specified file (which is local to the Tornado server)

The following table provides some examples

Destination Examples

stream stream

Tornado Web Services Guide Page 11
Version 2.0
Oct 2015

Destination Examples

stream:pdf

stream:pdf,doc

mailto mailto:support@docmosis.com

mailto:support@docmosis.com:pdf

file file:/documents/doc1.pdf

file:c\\:documents/doc1.zip:pdf,odt

The storage destinations may be repeated as required. For example multiple emails can
be sent by specifying mailto:address1@my.com;mailto:address2@my.com.

2.3.5 Including Dynamic Image Data

Image data can be included in the data stream. This is achieved by Base64 encoding the
image data, and assigning the value to the key which your template image is using. The
key matches the marker in your template and the image data (ie its value) must be
prefixed by "image:base64:" so that Tornado can identify and decode it as required.

As an example, an image in a template marked with "img_pic1" expects to find an
image called pic1 specified in the data. In JSON format it might look like:

...

"data":{"pic1":"image:base64:mawv0dga423g0345.....", ...

Base64 encoding is outside the scope of this guide, but it is easy to find libraries and
reference material to help you create it.

Note

Image data is typically large compared with textual information. You keep in mind the impact on your
bandwidth and document size when using image data. If there are only a few options for an image,
consider using different templates, sub-templates or separately uploading "stock" images.

2.3.6 Including "Stock" Image Data

Where the same image is repeated in document production, such as logos or signatures
you have options about how to obtain the image:

1. stream the image every time you render – this is wasteful of processing and
bandwidth if the image is repeatedly the same.

2. put all the options for the image into the template then have Tornado dynamically
strip out the undesired image(s) during the document render. This can be done
using conditional sections (See the Docmosis Template Guide for more information).

3. place the images in advance in the working Template area - these are called "stock"
images. You can reference these images in your data providing an efficient way to
get images into documents.

To use a stock image, you will need to place it in the template area first. This is done the
same way as you would place templates into the configured template location.

Page 12 Tornado Web Services Guide
Version 2.0

Oct 2015

With your stock image in place, you can reference it in your data using a key that
matches your template image, and a specially formatted value. For example, if your
template has the image named img_pic1 and you've uploaded face1.jpg, your key is
pic1 and your value is "[userImage:face1.jpg]". In JSON format, your data would
look something like this:

...

"data":{"pic1":"[userImage:face1.jpg]", ...

When you upload an image, you may also use a path-like structure for organising your
images. For example, you may have uploaded the image with the name:

 projectA/first/face1.jpg

in which case, the request above would look like this:

...

"data":{"pic1":"[userImage:projectA/first/face1.jpg]", ...

2.3.7 Response Messages
The response from the render method varies depending on:

1. whether it succeeds or fails

2. whether your destinations include streaming back in your request

Remember, you should always check the status code first to determine what to do next,
any status other than 200 means the render failed, and error information will be available
in the response body.

The following cases show the types of check you should perform to extract the response
information:

1. On Success (status code = 200) and storeTo includes "stream":

the body of the response is the binary document stream.

2. On Success (status code = 200) and storeTo excludes "stream":

the body of the response is a JSON object containing:
Field Definition

succeeded "true".

requestId The requestId given in the render request (if any).

3. On failure (status code <> 200):

the body of the response is a JSON object containing:
Field Definition

succeeded "false"

shortMsg A short message about the cause of the failure.

longMsg A more descriptive message about the failure if applicable. It may be
blank.

Tornado Web Services Guide Page 13
Version 2.0
Oct 2015

Field Definition

requestId The requestId given in the render request (if any).

2.3.8 Response Header

For the render service, if you supply a requestId in the request this will always be
returned in the header of the response in addition to the response message. This means
whether the render succeeds or fails, streams back or not, you will always be able to use
the header to determine the related request. This is particularly handy in scenarios where
the request is run asynchronously by your code.

2.4 The Get Template Structure Service
Get Template Structure retrieves the structure of a template that has been uploaded.
The structure returned describes fields, repeating and conditional sections etc. The
primary purpose of this method is to allow automated processing based on what is
actually in a template (such as creating dynamic data forms etc).

2.4.1 Service URL
/getTemplateStructure

2.4.2 Content-Type
The content-type for the call may be "application/x-www-form-urlencoded" or
"multipart/form-data".

2.4.3 Request Parameters

Field Definition

accessKey Your access key.

templateName The name of the template.

2.4.4 Response Messages
On success (status=200), the body of the response will contain the binary stream for the
template.

On failure, the response provides the following information:

Status Code Definition

succeeded "true" or "false"

shortMsg A short message about the result. In the case of an error this will be a short
error message. It may be blank in the case of a successful operation.

Page 14 Tornado Web Services Guide
Version 2.0

Oct 2015

Status Code Definition

longMsg A more descriptive message about the result. In the case of an error this will
be a long error message. It may be blank.

templateStructure A JSON format description of the template structure. The simplest case will
be a list of fields, for example:
“templateStructure”:{

 “field.0”:”firstName”,

 “field.1”:”lastName”,

}

The JSON keys use the terms “field”, “repeat”, “condition” and “image” to
instruct what type of item it is, and then an index starting at 0.

Importantly, items are in and order and nested structure matching the
template. This means that fields within repeating sections will be depicted
within a matching structure. For example:

“templateStructure”:{

 “field.0”:”firstName”,

 “field.1”:”lastName”,

 “repeat.0.addresses”:{

 “field.3”:”addressLine1”,

 “field.4”:”addressLine2”,

 }

}

Tornado Web Services Guide Page 15
Version 2.0
Oct 2015

	1 Introduction
	1.1 Feature Summary
	1.2 Quick Overview
	1.3 Important Reading
	1.4 Character Encoding
	1.5 Fonts in your templates
	1.6 Dynamic and Stock Images
	1.7 Document Storage
	1.8 Template Merging
	1.9 Production vs Development Mode

	2 The Developer API
	2.1 Fundamentals
	2.2 Response Codes and Messages
	2.3 The Render Service
	2.3.1 Service URL
	2.3.2 Content-Type
	2.3.3 Request Parameters
	2.3.4 StoreTo Options
	2.3.5 Including Dynamic Image Data
	2.3.6 Including "Stock" Image Data
	2.3.7 Response Messages
	2.3.8 Response Header

	2.4 The Get Template Structure Service
	2.4.1 Service URL
	2.4.2 Content-Type
	2.4.3 Request Parameters
	2.4.4 Response Messages

