
Tornado
Web Services Guide

Version 2.10.3

October 2025

Copyrights
© 2025 Docmosis Pty Ltd

Trademarks
Docmosis is a registered trademark of Docmosis Pty Ltd.

https://www.docmosis.com

Microsoft Word and MS Windows are registered trademarks of the Microsoft Corporation.

http://office.microsoft.com/en-us/default.aspx

http://www.microsoft.com/windows/

Adobe® PDF is a trademark of the Adobe Corporation.

http://www.adobe.com/products/acrobat/adobepdf.html

LibreOffice is a trademark of LibreOffice contributors and/or their affiliates.

http://www.libreoffice.org

http://www.libreoffice.org/
http://www.adobe.com/products/acrobat/adobepdf.html
http://www.microsoft.com/windows/
http://office.microsoft.com/en-us/default.aspx
https://www.docmosis.com/

TORNADO WEB SERVICES GUIDE

TABLE OF CONTENTS

1. INTRODUCTION..5

1.1. Overview...5

1.1.1. Terminology Used in this Document..5

1.1.2. Getting Started..6

1.1.3. Related Reading..6

1.2. Key Concepts..6

1.2.1. Character Encoding...6

1.2.2. Fonts in your Templates...6

1.2.3. Dynamic and Stock Images..7

1.2.4. Document Storage..7

1.2.5. Template Merging...7

1.2.6. Production vs Development Mode...8

1.3. Troubleshooting...8

2. THE DEVELOPER API...9

2.1. Fundamentals..9

2.2. Response Codes and Messages..9

2.3. The Render Service..10

2.3.1. Service URL..10

2.3.2. Request Headers...10

2.3.3. Request Body Parameters...11

2.3.4. Delivery Options..18

2.3.5. Response..19

2.3.6. Image Data...21

2.4. The Get Template Structure Service..23

2.4.1. Service URL..23

2.4.2. Request Headers...23

Version 2.10.3 | October 2025 Page 3 of 31

TORNADO WEB SERVICES GUIDE

2.4.3. Request Body Parameters...23

2.4.4. Response Body..24

2.5. The Convert Service...25

2.5.1. Service URL..25

2.5.2. Request Headers...25

2.5.3. Request Body Parameters...26

2.5.4. Response Body..26

2.6. The Ping Service...26

2.6.1. Service URL..27

2.6.2. Request Headers...27

2.6.3. Request Body Parameters...27

2.6.4. Response Codes..27

2.6.5. Response Body..27

2.7. The Status Service..27

2.7.1. Service URL..27

2.7.2. Request Headers...27

2.7.3. Request Body Parameters...28

2.7.4. Response Codes..28

2.7.5. Response Body..28

2.8. The Get Sample Data Service..29

2.8.1. Service URL..29

2.8.2. Request Headers...29

2.8.3. Request Body Parameters...29

2.8.4. Response Body..29

Version 2.10.3 | October 2025 Page 4 of 31

TORNADO WEB SERVICES GUIDE

1. INTRODUCTION

1.1. Overview

The Tornado Web Services Guide is intended for software application developers and
integrators who need to produce formatted documents and reports from applications.

Docmosis Tornado provides an easy way to generate sophisticated and dynamic documents
from virtually any application. The combination of web services and the Docmosis engine
provides capability that can be integrated rapidly.

Tornado services are:

 Template Driven - you can change your templates any time with a word processor;
upload and they will take effect immediately - wherever your application is running.

 Accessible - as long as you have network connectivity, you can render your documents
using just about any development environment and deliver to multiple destinations.

 Secure – Tornado server runs where you determine it should run. It can be exposed only
within your network as you determine. Tornado also provides access control to the
configuration console and to the web service end-points.

 Flexible - the Docmosis engine provides rich template capabilities and output formats.

 Simple API - calls to the service are made using HTTP/HTTPS form posting. The Render
service may be the only service that needs to be called. However, it is supported by
further services for extra control.

1.1.1. Terminology Used in this Document

Term Definition Term Definition

Template A normal Microsoft Word or
LibreOffice document containing
special Docmosis fields.

Fields/
Placeholders

Docmosis specific mark-up
within the template that controls
where data should be inserted.

Render The process of merging data with
a template to generate a
document.

Converter A single computer process that
performs one render request at
a time.

Access Key A unique string of characters sent
by the application calling the API
to verify it has permission to use
the service(s).

Version 2.10.3 | October 2025 Page 5 of 31

TORNADO WEB SERVICES GUIDE

1.1.2. Getting Started

To use the Tornado Web Service you will need to:

1. Download and install Tornado.

2. Open the Tornado console using a web browser.

3. Enter a license key and specify folders for a working area and your templates.

4. Place your templates in the folder you specified.

5. Connect your application to the Web Service provided by Tornado using the code
samples we provide.

The remainder of this document discusses using the Tornado Web Service via the API.

1.1.3. Related Reading

The Tornado Installation & Configuration Guide provides everything you need to know about
getting started with Tornado, from downloading and installing the software to configuring
your settings and generating a document using test templates and data.

The Tornado Template Guide provides fundamental details on the creation of templates. Refer
to this document to ensure the data you send to Tornado matches the data required by the
template.

1.2. Key Concepts

1.2.1. Character Encoding

All data passed to Tornado should be UTF-8 encoded. This provides a great balance between
flexibility and compatibility. If you pass data containing special characters, then you will need
to ensure you are UTF-8 encoding it, otherwise you'll get strange characters in your resulting
documents.

1.2.2. Fonts in your Templates

Your templates should only use fonts that are available on the server where Tornado runs. If
you use fonts which are not installed on the server, then you may see unexpected font
substitutions in your PDF documents or inaccurate page references when using indexes or
tables of content.

Version 2.10.3 | October 2025 Page 6 of 31

TORNADO WEB SERVICES GUIDE

1.2.3. Dynamic and Stock Images

When Tornado generates a document containing images, the images can be sourced in three
different ways:

Sent with your data: To send images with your data, they should be Base64 encoded and
included in your data like any other textual information.

See Including Base 64 Dynamic Image Data on page 21 for more information.

Sourced from the templates location: “Stock” images are images which are placed in the
Template area and dynamically sourced and inserted during document generation. This is
ideal for logos and signatures which change only occasionally or there is a set to select from.

Tornado will retrieve the images when needed, so they don’t need to be streamed each time.

See section 2.3.6.3 "Stock" Image Data on page 22 for more information.

Sourced from a URL: Image data can also be dynamically sourced from URL references in
your data. This means your data has a URL reference to an image and Tornado fetches and
inserts the image during document generation.

See section 2.3.6.2 Image Data from URLs on page 21 for more information.

1.2.4. Document Storage

Tornado provides the ability to send files to:

1. The local file system

2. The calling application

3. Email destinations

Documents can be rendered directly into these storage locations using the render service.

1.2.5. Template Merging

The render process is powerful enough to merge multiple templates into a single document.
Templates may reference other templates dynamically (via data) or statically (in the template
itself). This provides a mechanism for inserting common content across multiple templates.
See the Tornado Template Guide for information about how to reference one template from
another.

Version 2.10.3 | October 2025 Page 7 of 31

TORNADO WEB SERVICES GUIDE

1.2.6. Production vs Development Mode

Tornado provides the option to operate in a forgiving manner (development mode) or in a
very strict manner (production mode). The intention is that in development mode you are
allowed to produce documents that contain errors, helping you to locate the error and make
the necessary adjustments.

In production mode, no document with detected errors will be produced. Instead, the
operation will fail with diagnostic information so you can be assured that documents will
never be delivered that have fundamental errors in processing.

The mode is chosen on a render-by-render basis by passing the devMode parameter to the
render call.

1.3. Troubleshooting

The FAQ section of the Docmosis Resources website (https://resources.docmosis.com) may
help with troubleshooting problems when using the Tornado Web Service API.

Version 2.10.3 | October 2025 Page 8 of 31

https://resources.docmosis.com/

TORNADO WEB SERVICES GUIDE

2. THE DEVELOPER API

2.1. Fundamentals

Tornado offers a REST-based API. You can find more information about REST at: WikiPedia
REST.

All calls to Tornado are made using HTTP or HTTPS POST requests. You can write code to call
the API directly, use the Docmosis Tornado OpenAPI specification (downloadable from the
Tornado console) or use a third-party toolset like the Java Jersey Client (http://jersey.java.net)
creating your own requests. There is example code in various languages available on the
Docmosis web site.

Your application will use URLs to POST requests to the Tornado host running in your
environment. For example, the URL to render might look like:

https://localTornado1:8080/api/render

and the POST would contain the instructions and data for the render.

2.2. Response Codes and Messages

For every call you make to Tornado, you should first check the response code to determine
whether the call succeeded or failed. Once you know whether the call succeeded or not, you
can choose whether or not to check for further information in the response body.

Tornado returns status codes as follows:

Status Code Definition

200 Successful operation

400 Your Docmosis request is not valid

500 A server error has occurred

404 Invalid URL (not found)

Other 4** and 5** response codes may also occur. You should always confirm that you
received a 200 response before assuming success.

Version 2.10.3 | October 2025 Page 9 of 31

http://jersey.java.net/
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/Representational_State_Transfer

TORNADO WEB SERVICES GUIDE

Tornado also returns information about the result in JSON or XML format as follows:

Field Definition

succeeded "true" or "false".

shortMsg
A short message about the result. In the case of an error this will be a short
error message. It may be blank in the case of a successful operation.

longMsg
A more descriptive message about the result. In the case of an error this will
be a long error message. It may be blank.

Each call may also return additional information in the response information, as indicated in
the sections to follow.

2.3. The Render Service

The render service is the document production ‘work-horse’, and it is typically the main
service you need to call from your application. You can call the Render service with data and
instructions indicating which template to use, the formats you require, where to send the
result, and more.

Render works in production mode by default, meaning that any errors in the template or data
supply are considered fatal and the render call will fail with an error. The default behaviour
can be changed using the devMode flag (recommended: devMode=true for dev/test
environments).

2.3.1. Service URL

/render

2.3.2. Request Headers

2.3.2.1. Content-Type

There are different ways to call the render service based on content-type. Set the
content-type in request as follows:

Content Type Description

Multipart/form-data Parameters are passed as separate parameters. The
data parameter may be omitted if using the flag
strictParams=false. In this case, data items can

Version 2.10.3 | October 2025 Page 10 of 31

TORNADO WEB SERVICES GUIDE

Content Type Description

be mixed with known request parameters.

See strictParams for more information.

application/x-www-form-urlencoded

Parameters are passed as separate parameters url-
encoded. The data parameter may be omitted if
using the flag strictParams=false. In this case,
data items can be mixed with known request
parameters.

See strictParams for more information.

application/xml
A single XML document string provides instructions
and data (see examples below).

application/json
A single JSON document string provides instructions
and data (see examples below).

Choose the Content-type that is easiest for you to work with.

2.3.2.2. Access Key

The accessKey (API Key) can be specified as a request header or a body parameter (see below).

2.3.3. Request Body Parameters

There are many parameters to control the render method, but most are optional. Please see
the details in the table below for each parameter.

As an example, using the application/json content type a simple JSON format request
could look like this:

{"templateName":"template1.doc",

 "outputName":"result.pdf",

 "data":{"title":"Company Profile Report",

 "scope":"Initial Scoping Report"}}

You can see the data and instructions are combined into a single JSON structure.

The same request in XML format would look like:

<?xml version="1.0" encoding="utf-8"?>

<render templateName="template1.doc" outputName="result.pdf">

 <data>

Version 2.10.3 | October 2025 Page 11 of 31

TORNADO WEB SERVICES GUIDE

 <report title="Company Profile Report"

 scope="Initial Scoping Report"/>

 </data>

</render>

The table below details the settings and options for the render request.

2.3.3.1. Mandatory Parameters

Parameter Description Default

templateName

The name of the template to use.

Multiple templates can be specified using the ;
character to separate the templates. With multiple
template names, a single outputName for PDF
output results in a single combined PDF. In all other
cases, a ZIP file will be returned containing each
rendered document.

outputName

The name to give the rendered document. If no
format is specified (see outputFormat), the format
of the resulting document is derived from the
extension of this name. For example,
"resume1.pdf" implies a PDF format document.
The name may be supplied without an extension (eg
"resume1") and the outputFormat parameter will
specify the format(s) to return.

If multiple template names are specified, multiple
(matching) output names can be specified to create
a zip of named outputs.

2.3.3.2. AccessKey Parameter

Parameter Description Default

accessKey

Your access key if specified in the Tornado
configuration. Mandatory, if specified.

Note the accessKey can be alternatively provided
using a http header.

Version 2.10.3 | October 2025 Page 12 of 31

TORNADO WEB SERVICES GUIDE

2.3.3.3. Data Parameters

Parameter Description Default

data

The Data that will populate the document. This may
be etiher XML or JSON format. The type of data
given determines the format of the response.

Also see strictParams about interaction between
data and parameters.

stylesInText

If set to "y","yes" or "true", your data will be parsed
looking for html-like mark-up. The following mark-
up is supported:

 Bold e.g. "this is bold"
 Italics e.g. "this is <i>italics</i>"
 Underline e.g. "this is <u>underline</u>"
 Cell Colouring e.g. "<bgcolor="#ff0000"/>”

The bgcolor tag must be at the beginning of your
field data and the template field must be inside a
table cell to take effect.

false

strictParams

Controls whether extra parameters in the request
should be treated as data or as an error.

If true, the render service will return an error if a
parameter is specified that is not listed in this table.
The error message lists the acceptable parameters.

If false, parameters not listed in this table are
allowed and are added to the data used to populate
the template. In this case, data values included as
parameters will take precedence over any matching
value passed via the data parameter.

true

2.3.3.4. Email Delivery Parameters

Parameter Description Default

mailSubject
If sending email, this will be used as the subject line
of the email.

mailBodyHtml
If sending email, this will be used as the body of the
email and will be sent as html format.

mailBodyText
If sending email, this will be used as the body of the
email and will be sent as text.

Version 2.10.3 | October 2025 Page 13 of 31

TORNADO WEB SERVICES GUIDE

Parameter Description Default

mailNoZipAttachments

If this is set to true, any email attachments will be
attached as individual files rather than as a single
zip (when multiple formats are being used).

false

2.3.3.5. Pdf Specific Parameters

Parameter Description Default

pdfArchiveMode

Note: depreciated, please see pdfVersion

Create pdf documents in PDF-A mode for long term
storage. Note this setting disables certain PDF
features such as password protection and external
hyperlinks.

false

pdfVersion

Set the PDF version to use. By default, the engine
will use the highest normal PDF version available (eg
PDF 1.6), but this can be changed to use long term
archive specifications as required (eg PDF/A-1b,
PDF/A-2b, PDF/A-3b).

pdfUniversalAccessibility Create pdf documents with universal accessibility
settings. Default = false.

Note that when set to true, a document will be
generated even if there are accessibility problems
within the template. Items to check include:

 The document title is set.
 The document language is set, or all styles in

use have the language property set.
 All images, graphics, OLE objects have an

alternate (alt) text or a title.
 Tables do not contain split or merged cells.
 Only integrated numbering is used, no manual

numbering. For example, do not type "1.", "2.",
"3." at the beginning of paragraphs.

 Hyperlink texts without the underlying
hyperlinks.

 The contrast between text and the background
meets the WCAG specification.

 No blinking text.
 No footnotes or endnotes.
 Headings must increase sequentially with no

false

Version 2.10.3 | October 2025 Page 14 of 31

TORNADO WEB SERVICES GUIDE

Parameter Description Default

skips, for example, you cannot have Heading 1,
Heading 3, and no Heading 2.

 Text does not convey additional meaning with
(direct) formatting.

pdfWatermark
If specified, PDF documents will have the specified
text added as a watermark across the document.

pdfWatermarkColor

If a watermark is specified, this font color will be
used. Must be a valid hexadecimal color, eg
"#FF0000" for red.

pdfWatermarkFontSize
If a watermark is specified, this font size will be
used.

pdfWatermarkFontName

If a watermark is specified, this font will be used. If
the font is not installed on the server, then a
substitute will be used.

pdfWatermarkRotation
If a watermark is specified, this rotation angle will be
used. This must be a value between 0 and 360.

pdfTagged

If specified, the PDF documents will have extra
information inserted to assist with low-vision
readability tools. The alt-text for images in
particular becomes “readable”

false

pdfSkipEmptyPages
If false, blank pages due to odd/even breaks will be
included in the PDF.

false

pdfRestrictPassword
Set the password for further security restrictions.
Setting this also enables the further restrictions.

pdfRestrictPrinting

Restrict printing of the created PDF:

0 = cannot be printed

1 = print only low resolution

2 = print in full quality

Requires that pdfRestrictPassword has been set.

2

pdfRestrictEditing Restrict editing of the created PDF:

0 = no edits allowed

1 = pages can be inserted and rotated

2 = form fields can be filled in

3 = form fields can be filled and comments can be
added

4

Version 2.10.3 | October 2025 Page 15 of 31

TORNADO WEB SERVICES GUIDE

Parameter Description Default

4 = above 1-3 enabled, but page extraction disabled

Requires that pdfRestrictPassword has been set.

pdfRestrictCopy

Set whether copy of PDF content is disabled.

“true” or “y” disables the copy.

Requires that pdfRestrictPassword has been set.

pdfRestrictAllowAccessibilty

Set whether content can be extracted by
accessibility applications.

“true” or “y” disables the accessibility access.

Requires that pdfRestrictPassword has been set
and also pdfRestrictCopy must be set.

pdfEInvoiceSpec

The eInvoice Specification to use if creating an
eInvoice. For example:

 ZUGFeRDv2 (Uses EN 16931 profile)

 ZUGFeRDv1 (Uses COMFORT profile)

Order-Xv1 (Uses COMFORT profile)

Factur-X-v1-EN16931

The pdfEInvoiceAttachment must also be
provided and pdfVersion must be set to PDF/A-
3B.

pdfEInvoiceAttachment

The xml eInvoice file in base64 format. The provided
xml is expected to be valid and conforming to the
specification provided in pdfEInvoiceSpec.

2.3.3.6. Other Parameters

Parameter Description Default

compressSingleFormat

Optionally choose to zip the result when a single
output document is produced. The zip archive will
contain a document in the specified format with a
name based on outputName + outputFormat.
The resulting zip file name will be the outputName
with the .zip extension appended as required. This
option is ignored if more than one outputFormat is
specified. Positive values are "y", "yes" and "true"
(case-insensitive).

false

Version 2.10.3 | October 2025 Page 16 of 31

TORNADO WEB SERVICES GUIDE

Parameter Description Default

devMode

Document production can run in development or
production respectively. If set to "y", "yes" or "true"
this operation will work in "dev" mode, meaning
that if something is incorrect in the template, data
or instructions Tornado will do it's best to produce a
document. Such a document may contain errors
such as missing images and data, and wherever
possible, Tornado will highlight problems to indicate
the failure.

In production mode, errors in document rendering
will result in a failure result only, and no document
will be produced. The production mode is to
ensure that a bad document is never
produced/delivered to a recipient. The default
mode is production (that is, devMode is off).

false

outputFormat

The format(s) of the rendered document. This can
be a single format, or a ‘;’ semi-colon delimited list.
Multiple formats imply a zip file and outputName
will have .zip appended as required. Files inside zip
will be named using outputName and will have the
format-specific extension appended as required.
Valid options are pdf, doc, odt, rtf, html, txt.

Note that the header X-Docmosis-Zip-Created
(described below) will indicate if a zip file has been
created and returned.

passwordProtect

If specified, this parameter will set the password for
PDF and DOCX files created by the render. The
password is used when opening the document. Use
with care as setting the password means the
recipient must know the password to read the
document. Note: pdfArchiveMode will disable any
password setting for PDF documents.

requestId
Any string you would like to use to identify this job.
This string will be returned in responses.

storeTo Specify where to send the resulting document. If no
specification is given, "stream" is assumed and the
result will be streamed back to the requester,
otherwise the ‘;’ semi-colon delimited list of
destinations will receive the result.

stream

Version 2.10.3 | October 2025 Page 17 of 31

TORNADO WEB SERVICES GUIDE

Parameter Description Default

Valid options are stream, mailto, file

See section 2.3.4 Delivery Options StoreTo Options
for more details

streamResultInResponse

If set to "y", "yes" or "true", the streamed result will
be base64 encoded and included in the JSON or
XML response under the key “resultFile”. Note
this only applies if the request includes (or implies) a
“stream” result (see the storeTo parameter above).

false

2.3.4. Delivery Options

2.3.4.1. StoreTo Options

Tornado can render to a variety of destinations using the storeTo parameter. The table
below summarizes the options.

Destination Examples

stream

(default)

Stream the document back to the caller. By default, this will be a binary
stream direct response. If the parameter streamResultInResponse is
specified in the request, the document will be base64 encoded and
included in the JSON or XML response instead under the key
“resultFile”.

mailto

Email* the document to the specified address.

Please note the other email related parameters (described in section
2.3.3.4 Email Delivery Parameters) to set the subject and other features of
the email.

file
Store the document in the specified file (which is local to the Tornado
server).

* Note: email delivery is not guaranteed. It is generally less secure, less reliable and slower
than other delivery mechanisms since much of the delivery process is outside of the control of
Docmosis.

The following table provides simple examples of using the storeTo options.

Example Examples

stream (or not specified) Document is returned to the caller

mailto:bob@example.com Email the document to bob@example.com

Version 2.10.3 | October 2025 Page 18 of 31

TORNADO WEB SERVICES GUIDE

Example Examples

file:/documents/doc1.pdf Create a pdf file at the location
/documents/doc1.pdf

2.3.4.2. Delivering to Multiple Destinations

Multiple destinations can also be specified at once, using a semi-colon to separate the
destinations. For example:

stream;mailto:bob@example.com;mailto:anne@example.com

will deliver the document back to the calling application as well as emailing it to two
recipients.

2.3.4.3. Overriding the Output Format

By default, all destinations will receive all formats specified by outputFormat (or implied by
the outputName if outputFormat not specified). Each destination may override the defaults
settings and specify what to receive using this style "stream:<format[,format]>" e.g.
"stream:pdf".

The following table shows some examples.

Destination Examples

stream:pdf Return a pdf to the caller

stream:pdf,docx
Return a zip to the caller containing a
pdf and a docx

mailto:bob@example.com:docx,pdf
Send an email with docx and pdf
attachments

file:c\:documents\doc1.zip:pdf,odt
Create a zip file in the specified location
containing pdf and odt documents

2.3.5. Response

2.3.5.1. Response Body

The response from the render method varies depending on:

1. whether it succeeds or fails

Version 2.10.3 | October 2025 Page 19 of 31

TORNADO WEB SERVICES GUIDE

2. whether the request specifies stream as a destination (implied or explicit)

Calling applications must check the status code of the response to determine what to do next.
Any status other than 200 means the render failed, and error information will be available in
the response body.

The following cases show the types of check extract the response information as follows:

1. On Success (status code = 200) and storeTo includes "stream":

the body of the response is the binary document stream.

2. On Success (status code = 200) and storeTo excludes "stream":

the body of the response is a JSON object containing:

Field Definition

succeeded "true".

requestId The requestId given in the render request (if any).

3. On failure (status code <> 200):

the body of the response is a JSON object containing:

Field Definition

succeeded "false"

shortMsg A short message about the cause of the failure.

longMsg A more descriptive message about the failure if applicable. It may be blank.

requestId The requestId given in the render request (if any).

2.3.5.2. Response Headers

For the render service, the following headers may be returned to assist response processing.

Header Notes

X-Docmosis-Server An identifier for this service “tornado”.

X-Docmosis-RequestId
Returned if the original request provided a
requestId.

X-Docmosis-PagesRendered The number of pages rendered

X-Docmosis-Document-Errors-Detected Whether or not errors were detected in the
document rendering. This is useful in “dev mode” to

Version 2.10.3 | October 2025 Page 20 of 31

TORNADO WEB SERVICES GUIDE

Header Notes

be able to quickly determine whether the document
created is known to have errors.

X-Docmosis-Zip-Created Set to true if the result being returned is a zip file.

2.3.6. Image Data

2.3.6.1. Including Base 64 Dynamic Image Data

Image data can be included in the data stream. This is achieved by Base64 encoding the
image data and assigning the value to the key which your template image is using. The image
data (i.e. its value) must be prefixed by "image:base64:" so that Tornado can identify and
decode it as required.

As an example, an image in a template marked with "img_pic1" expects to find an image
called pic1 specified in the data. In JSON format it might look like:

"data":{"pic1":"image:base64:mawv0dga423g0345....."

or (in RFC2397 format):

"data":{"pic1":"....."

Base64 encoding is outside the scope of this guide, but it is easy to find libraries and
reference material to help you create it.

Image data is typically large compared with textual information. Keep in mind the
impact on your bandwidth and document size when using image data. If there are only
a few options for an image, consider using different templates, sub-templates or
separately uploading "stock" images.

2.3.6.2. Image Data from URLs

Image data can also be dynamically sourced from URL references in your data. This is
disabled by default and so needs to be enabled by adding a setting in the Tornado
Configuration Custom Settings. The setting is a single line, semicolon delimited whitelist of
allowed URL patterns:

docmosis.external.resources.whitelist=http://eg.com/images;

Version 2.10.3 | October 2025 Page 21 of 31

TORNADO WEB SERVICES GUIDE

The whitelist is used to match the start of the URL, so note that you can narrow down the
allowed URLs to specific paths under the domain. If you were to use both http and https you
would need to add both.

As normal, your template would have marked up the image with a name that ties to your
data, for example “pic1”. To dynamically replace the image “pic1” with an image from a URL,
the data would look something like

"pic1":"[imageUrl:http://image.site/Image103.png]"

The above data would cause Docmosis to fetch the image from:

http://image.site/Image103.png

and put it into the document dynamically.

2.3.6.3. "Stock" Image Data

Where an image is used repeatedly in document generation, such as logos or signatures, you
have options about how to obtain the image:

1. stream the image with every render – this is wasteful of processing and bandwidth if the
image is repeated.

2. put all the options for the image into the template then have Tornado dynamically strip
out the undesired image(s) during the document render. This can be done using
conditional sections (See the Cloud Template Guide for more information).

3. place the images in the same folder as the Templates - these are called "stock" images.
You can reference these images in your data providing an efficient way to get images into
documents.

To use a stock image, you firstly need to place it in the template folder. This is done the same
way as you would place templates into the configured template location.

With your stock image in place, you can reference it in your data using a key that matches
your template image, and a specially formatted data value. The data value should be
formatted so the file name and location of the image is prefixed with “userImage:” and the
entire data value surrounded by square brackets.

For example, if your template has an image named img_pic1 and you've uploaded an image
called face1.jpg, your data key is pic1 and your data value is "[userImage:face1.jpg]". In JSON
format, your data would look something like this:

"pic1":"[userImage:face1.jpg]"

Version 2.10.3 | October 2025 Page 22 of 31

TORNADO WEB SERVICES GUIDE

When you upload an image, you may also use a path-like structure for organising your
images. For example, you may have uploaded the image with the name:

projectA/first/face1.jpg

in which case, the request above would look like this:

"pic1":"[userImage:projectA/first/face1.jpg]"

2.4. The Get Template Structure Service

Get Template Structure retrieves the structure of a template that has been uploaded. The
structure returned describes fields, repeating and conditional sections etc. The primary
purpose of this method is to allow automated processing based on what is actually in a
template (such as creating dynamic data forms etc).

2.4.1. Service URL

/getTemplateStructure

2.4.2. Request Headers

2.4.2.1. Content-Type

The content-type for the call may be "application/json", "application/x-www-form-
urlencoded" or "multipart/form-data".

2.4.2.2. Access Key

The accessKey (API Key) can be specified as a request header or a body parameter (see below).

2.4.3. Request Body Parameters

Field Definition

templateName The name of the template.

accessKey Your access key if specified in the Tornado configuration.

stringify
If set to "y", "yes" or "true" then the json result will be stringified,
otherwise the json response object will be sent in full. Defaults to false.

Version 2.10.3 | October 2025 Page 23 of 31

TORNADO WEB SERVICES GUIDE

2.4.4. Response Body

On success (status=200), the body of the response will contain the data structure below.

On failure, the response will contain at least the succeeded and shortMsg fields.

Field Definition

succeeded "true" or "false"

shortMsg

A short message about the result. In the case of an error this will be a
short error message. It may be blank in the case of a successful
operation.

longMsg
A more descriptive message about the result. In the case of an error
this will be a long error message. It may be blank.

templateStructure A JSON format description of the template structure. Template
elements are returned in an array, for example:

“templateStructure”:[

{"type":"field", "fieldIdx":0, "text":"name", "dataRefs":["name"]},

{"type":"field", "fieldIdx":1, "text":"address", "dataRefs":["address"]}

]

The above example show two fields were found and each correlates
with a lookup on a single data item (“dataRefs”). A template element
such as an expression-field may correlate with multiple data references.
For example, the template expression:

<<{firstName + ‘ ‘ + lastName}>>

is reported as a field with two dataRefs:

{"type":"field", "fieldIdx":2, "text":"{firstName + ' ' + lastName}",
"dataRefs":["firstName","lastName"]}

The types reported are: “field”, “repeat”, “condition”, “image”,
“templateRef” corresponding to matching structures in the template.
Each type has it’s own index which is global to the document. “text”
shows the string as presented in the template and dataRefs reports the
identified data elements correlated to the template element.

The result also indicates the nesting of elements. The template content:

<<cs_hasPeople>>

<<rs_people>>

<<name>>

<<es_>>

<<es_>>

Version 2.10.3 | October 2025 Page 24 of 31

TORNADO WEB SERVICES GUIDE

Field Definition

Would be expressed as:

[

 {

 "type": "condition", "conditionIdx": 0, "text": "cs_hasPeople",

 "dataRefs": ["hasPeople"],

 "contains": [

 {

 "type": "repeat", "repeatIdx": 0, "text": "rs_people",

 "dataRefs": ["people"],

 "contains": [

 {

 "type": "field", "fieldIdx": 0, "text": "name",

 "dataRefs": ["name"]

 }

]

 }

]

 }

]

2.5. The Convert Service

The convert service allows files to be converted between formats. The process is a simple
conversion with no concept of templates and data. It applies to spreadsheet, presentation
and drawing types of documents.

2.5.1. Service URL

/convert

2.5.2. Request Headers

2.5.2.1. Content-Type

The content-type for the call is "multipart/form-data".

Version 2.10.3 | October 2025 Page 25 of 31

TORNADO WEB SERVICES GUIDE

2.5.2.2. Access Key

The accessKey (API Key) can be specified as a request header or a body parameter (see below).

2.5.3. Request Body Parameters

Field Definition

file The file to convert

outputName

The name of the new file to create. The extension is used to determine
the type of file to create. For example, “result.pdf” causes a PDF
document to be created.

accessKey Your access key if specified in the Tornado configuration.

2.5.4. Response Body

The converter service responds with a simple indication of success or failure using the
standard structure:

Field Definition

succeeded "true" or "false".

shortMsg

A short message about the result. In the case of an error this will be a
short error message. It may be blank in the case of a successful
operation.

longMsg
A more descriptive message about the result. In the case of an error
this will be a long error message. It may be blank.

2.6. The Ping Service

The Ping service allows monitoring systems to detect whether the Tornado server has been
started.

The “status” service is more useful in general. The ping service may be helpful with
certain types of diagnostics.

Version 2.10.3 | October 2025 Page 26 of 31

TORNADO WEB SERVICES GUIDE

2.6.1. Service URL

/ping

2.6.2. Request Headers

2.6.2.1. Content-Type

The content-type is not specified, since the call takes no parameters.

2.6.3. Request Body Parameters

None.

2.6.4. Response Codes

200 – successfully pinged

2.6.5. Response Body

There is no response body returned.

2.7. The Status Service

The Status service allows monitoring systems to determine the operational status of Tornado,
including whether it is ready to render documents.

2.7.1. Service URL

/status

2.7.2. Request Headers

2.7.2.1. Content-Type

The content-type is not relevant.

Version 2.10.3 | October 2025 Page 27 of 31

TORNADO WEB SERVICES GUIDE

2.7.3. Request Body Parameters

None

2.7.4. Response Codes

200 – the server is ready to render documents. Additional information is also returned, see
table below.

2.7.5. Response Body

Field Definition

ready "true" or "false".

message A short message indicating details of the current status

detail

A JSON structure as follows:

 converterCountInUse – then number of converters currently in use
 converterCountOnline – the number of converters currently online
 converterCountOffline – the number of converters configured but

not currently online
 conveterCountTotal – the total number of configured converters
 uptimeSeconds – how long Tornado has been running

An example :

{

 "detail": {

 "converterCountInUse":"0",

 "converterCountOffline":"0",

 "converterCountOnline":"4",

 "converterCountTotal":"4",

 "uptimeSeconds":"20"

 },

 "message":"ready",

 "ready":"true"

}

Version 2.10.3 | October 2025 Page 28 of 31

TORNADO WEB SERVICES GUIDE

2.8. The Get Sample Data Service

The Get Sample Data service allows sample data to be generated for a template based on the
current structures in the template. The sample data can be created in JSON or XML format
and can then be fed back to the render service to generate populated documents.

The service creates values like “value1”, “value2” for each field element.

If the template has an error in it, Docmosis will generate a blank data set.

2.8.1. Service URL

/getSampleData

2.8.2. Request Headers

2.8.2.1. Content-Type

The content-type for the call may be "application/json", "application/x-www-form-
urlencoded" or "multipart/form-data".

2.8.2.2. Access Key

The accessKey (API Key) can be specified as a request header or a body parameter (see below).

2.8.3. Request Body Parameters

Field Definition

templateName The name of the template for which to create sample data

accessKey Your access key if specified in the Tornado configuration.

format
If blank or “json”, JSON format data will be returned. Otherwise XML
format data will be returned

stringify
If set to "y", "yes" or "true" then the json result will be stringified,
otherwise the json response object will be sent in full. Defaults to false.

2.8.4. Response Body

The service responds with a JSON structure as follows:

Version 2.10.3 | October 2025 Page 29 of 31

TORNADO WEB SERVICES GUIDE

Field Definition

succeeded "true" or "false".

shortMsg

A short message about the result. In the case of an error this will be a
short error message. It may be blank in the case of a successful
operation.

longMsg
A more descriptive message about the result. It may be blank, or, In the
case of an error, a long error message.

templateSampleData
JSON or XML formatted sample data that can be used to populate the
template.

templateDetails

A JSON structure providing details of errors in the template:

 templateHasErrors – true or false
 templateFirstError – a string of the first error message in the

template if errors are present.

Version 2.10.3 | October 2025 Page 30 of 31

Docmosis Pty Ltd

Address
Suite 8 / 5 Hasler Road,
Osborne Park,
WA 6017 Australia

Website
https://www.docmosis.com

Resources
https://resources.docmosis.com

https://resources.docmosis.com/
https://www.docmosis.com/

	1. Introduction
	1.1. Overview
	1.1.1. Terminology Used in this Document
	1.1.2. Getting Started
	1.1.3. Related Reading

	1.2. Key Concepts
	1.2.1. Character Encoding
	1.2.2. Fonts in your Templates
	1.2.3. Dynamic and Stock Images
	1.2.4. Document Storage
	1.2.5. Template Merging
	1.2.6. Production vs Development Mode

	1.3. Troubleshooting

	2. The Developer API
	2.1. Fundamentals
	2.2. Response Codes and Messages
	2.3. The Render Service
	2.3.1. Service URL
	2.3.2. Request Headers
	2.3.2.1. Content-Type
	2.3.2.2. Access Key

	2.3.3. Request Body Parameters
	2.3.3.1. Mandatory Parameters
	2.3.3.2. AccessKey Parameter
	2.3.3.3. Data Parameters
	2.3.3.4. Email Delivery Parameters
	2.3.3.5. Pdf Specific Parameters
	2.3.3.6. Other Parameters

	2.3.4. Delivery Options
	2.3.4.1. StoreTo Options
	2.3.4.2. Delivering to Multiple Destinations
	2.3.4.3. Overriding the Output Format

	2.3.5. Response
	2.3.5.1. Response Body
	2.3.5.2. Response Headers

	2.3.6. Image Data
	2.3.6.1. Including Base 64 Dynamic Image Data
	2.3.6.2. Image Data from URLs
	2.3.6.3. "Stock" Image Data

	2.4. The Get Template Structure Service
	2.4.1. Service URL
	2.4.2. Request Headers
	2.4.2.1. Content-Type
	2.4.2.2. Access Key

	2.4.3. Request Body Parameters
	2.4.4. Response Body

	2.5. The Convert Service
	2.5.1. Service URL
	2.5.2. Request Headers
	2.5.2.1. Content-Type
	2.5.2.2. Access Key

	2.5.3. Request Body Parameters
	2.5.4. Response Body

	2.6. The Ping Service
	2.6.1. Service URL
	2.6.2. Request Headers
	2.6.2.1. Content-Type

	2.6.3. Request Body Parameters
	2.6.4. Response Codes
	2.6.5. Response Body

	2.7. The Status Service
	2.7.1. Service URL
	2.7.2. Request Headers
	2.7.2.1. Content-Type

	2.7.3. Request Body Parameters
	2.7.4. Response Codes
	2.7.5. Response Body

	2.8. The Get Sample Data Service
	2.8.1. Service URL
	2.8.2. Request Headers
	2.8.2.1. Content-Type
	2.8.2.2. Access Key

	2.8.3. Request Body Parameters
	2.8.4. Response Body

