
Docmosis-Java
Template Guide

Version 4.9

October 2025

Copyrights
© 2025 Docmosis Pty Ltd

Trademarks
Docmosis is a registered trademark of Docmosis Pty Ltd.

https://www.docmosis.com

Microsoft Word and MS Windows are registered trademarks of the Microsoft Corporation.

http://office.microsoft.com/en-us/default.aspx

http://www.microsoft.com/windows/

Adobe® PDF is a trademark of the Adobe Corporation.

http://www.adobe.com/products/acrobat/adobepdf.html

LibreOffice is a trademark of LibreOffice contributors and/or their affiliates.

http://www.libreoffice.org

http://www.libreoffice.org/
http://www.adobe.com/products/acrobat/adobepdf.html
http://www.microsoft.com/windows/
http://office.microsoft.com/en-us/default.aspx
https://www.docmosis.com/

DOCMOSIS-JAVA TEMPLATE GUIDE

TABLE OF CONTENTS

1. INTRODUCTION..7

1.1. Using this Guide...7

1.1.1. Terminology and Conventions Used in this Document..7

1.2. Troubleshooting...8

2. TEMPLATES OVERVIEW..9

2.1. Separating Content from Presentation...9

2.2. What Are Templates?..9

2.3. How Does Document Generation Work?...10

2.4. Template Features...10

2.4.1. General Features...11

2.4.2. Advanced Features...11

2.4.3. Docmosis Elements...12

2.4.4. Expressions and Functions..21

2.5. Error Handling..42

2.6. Useful Diagnostics...42

2.6.1. Diagnostic tools...43

3. CREATING DOCMOSIS TEMPLATES...44

3.1. Incorporating Docmosis Elements...44

3.2. Using Plain Text Fields...45

3.3. Using the Built-in Word Processor Fields..46

3.3.1. Creating a Field Using Microsoft Word Merge Fields..46

3.3.2. Inserting a Field Using LibreOffice Writer Input Fields...47

3.4. Using Text Substitution...47

3.4.1. Simple Field Name Syntax..48

Version 4.9 | October 2025 Page 3 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

3.4.2. Optional Paragraph Fields..48

3.4.3. HTML..50

3.5. Using Docmosis Variables...51

3.5.1. Check if a variable has been set..52

3.6. Using Images..52

3.6.1. Image Hyperlinks..57

3.7. Creating Barcodes..57

3.7.1. Supported Barcode Formats...57

3.7.2. Typical Barcode Example...58

3.7.3. Using a “barcode” Field to Specify Barcode Settings...58

3.7.4. Barcode Tips..60

3.7.5. Barcode Settings in Detail..60

3.8. Creating QR Codes...62

3.8.1. Typical QR Code Example...62

3.8.2. Using a “qrcode” Field to Specify Default Settings...63

3.8.3. QR Code Settings in Detail...63

3.9. Creating Active Hyperlinks...64

3.10. Using Conditional Sections...65

3.11. Repeating Sections..67

3.11.1. Stepping Across in Repeating Sections...69

3.11.2. Stepping Down in Repeating Sections..71

3.11.3. Sorting in Repeating Sections..72

3.11.4. Filtering in Repeating Sections..76

3.11.5. Grouping in Repeating Sections..76

3.11.6. Combining Repeating Section Directives..78

3.12. Using Tables..79

3.12.1. Conditional Rows..79

3.12.2. Repeating Rows...80

3.12.3. Stepping in Repeating Rows..81

3.12.4. Sorting in Repeating Rows...81

Version 4.9 | October 2025 Page 4 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

3.12.5. Filtering in Repeating Rows..81

3.12.6. Grouping in Repeating Rows...82

3.12.7. Combining Repeating Row Directives...82

3.12.8. Alternating Row Colours and Border Controls..83

3.12.9. Disabling Row Alternating..84

3.12.10. Conditional Columns..85

3.12.11. Advanced Table Structures..87

3.13. Using Lists...88

3.14. Using Headers and Footers...89

3.15. Using Comments in Templates...90

3.16. Merging Templates Together..91

3.16.1. Combining Templates Using Merging/Embedding...92

3.16.2. Combining Templates Using Coordination..93

3.16.3. Coordination-Specific Features...94

3.16.4. Advantages and Disadvantages of Merging Features...95

3.16.5. Direct Referencing (ref:)...96

3.16.6. Indirect Referencing (refLookup:)..96

3.16.7. Templates in Different Locations..97

3.16.8. When a Template Cannot be Found...98

3.16.9. Continuing Numbered Lists Across Templates...99

3.17. Page Breaks and Other Breaks...100

3.18. Creating Pre-filled PDF Forms...101

3.18.1. Adding a Text Field..102

3.18.2. Adding a Checkbox...103

4. FORMATTING DATA...105

4.1. Formatting Numbers...106

4.1.1. The Number Formatting String...106

4.1.2. Locale-Specific Formatting...107

4.2. Formatting Dates...109

Version 4.9 | October 2025 Page 5 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

4.2.1. The Date Formatting String..110

5. APPENDICES..113

Appendix 1 - Number Formatting Codes...113

Appendix 2 – Date and Number Formatting Locales...114

Appendix 3 - Date Formatting Codes...118

Version 4.9 | October 2025 Page 6 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

1. INTRODUCTION

Welcome to the Docmosis Template Guide. This manual is intended for template authors who
will create the richly formatted template layouts using the special Docmosis template syntax.

Docmosis is an easy-to-use document generation engine. It integrates with other software to
provide the ability to generate documents and reports by merging data supplied from the
software with the templates.

1.1. Using this Guide

This Template Guide provides information on creating the templates (in either Microsoft Word
or LibreOffice Writer) that will be used to generate the documents. This guide assumes a level
of competence in using one of those word processors and is not a complete reference manual
for either.

In general, the activities to create the templates are the same for both tools, but where
there are differences between the two, this document highlights them and describes the
activities for each word processor.

1.1.1. Terminology and Conventions Used in this Document

This document uses typographical conventions that highlight significant parts of the text to
distinguish it from normal text.

Text that looks like this… Means this…

<<fieldname>> A field in the document template that will be replaced with data.

template.docx A file name, a file extension or a web site address.

Version 4.9 | October 2025 Page 7 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Additionally, some parts of the document are written specifically for one of the word
processors mentioned. When this is the case, the paragraph has the respective icon in the left
margin.

This icon… Means this…

The information only applies to ODT format templates created with
LibreOffice Writer.

The information only applies to DOCX format templates created with
Microsoft Word.

The following terms are used in this document to identify elements of a template.

Term Description

Field
A placeholder that is used by Docmosis to substitute data or to control
document flow.

Boilerplate
Graphical and textual content that is added to a template as reusable
content to avoid having the template author recreate the content for
each document. Docmosis uses boilerplate components.

Header and footer
Elements of a printed document that repeat on every page.
Information in these elements is usually administrative information
about the document.

1.2. Troubleshooting

The Docmosis Resources website (https://resources.docmosis.com) has tutorials and template
examples to help find answers quickly.

Version 4.9 | October 2025 Page 8 of 119

https://resources.docmosis.com/

DOCMOSIS-JAVA TEMPLATE GUIDE

2. TEMPLATES OVERVIEW

This chapter provides information about the main features of a Docmosis template.

2.1. Separating Content from Presentation

Developing applications that contain document presentation logic means that when an
organisation’s documents change (such as a new company logo, different corporate font) or
the content of the documents change (following legal review or statutory changes), so must all
of the documents generated by that application.

Using Docmosis, ‘presentational’ features can be developed separately from application code,
by using commonly used word processors. This has two distinct benefits:

 The initial creation of the templates can be assigned to those who are experts in that field
and they can be created using commonly used word processors; and

 Branding and content changes do not require software development support, which can
be time consuming and expensive.

In addition to these benefits, Docmosis is fast: the core document generation engine can
generate hundreds of documents in minutes in the most popular formats, which is a great
improvement on other systems currently available.

2.2. What Are Templates?

As far as Docmosis is concerned, templates are standard Microsoft Word or LibreOffice Writer
documents that may also contain Docmosis “fields”. Docmosis looks for the special Docmosis
fields to determine where to insert data and to determine the start and end of content to be
included, removed or repeated.

Docmosis does not require any custom plugins or special additions to those word processors
in order to be able to create the fields. This guide will describe the different types of fields
recognised by Docmosis, and how to use them.

As well as using fields to drive Docmosis, templates in Microsoft Word and LibreOffice Writer
give authors control over aspects such as:

 page size, margins, and columns;

Version 4.9 | October 2025 Page 9 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

 information in headers and footers;

 typographic characteristics that describe paragraph and character styles; and

 boilerplate text, graphics and embedded field codes.

Documents generated using a template retain these features and settings when they are
generated. Once the document is generated, it has no connection to the template from which
it came. Templates can be modified as required without any concern to the documents that
have been previously generated.

2.3. How Does Document Generation Work?

In the simplest terms, Docmosis merges the data provided by a software application with the
fields in the template to generate documents.

Apart from simple field/data substitution, some of the fields may be instructions to Docmosis
to add or remove content; repeat over blocks of data; inject images, html, hyperlinks and so
on.

The generated documents may be:

 stored electronically, printed, viewed or any combination of these; and

 published in several document formats.

If the template includes an index, table of contents, page numbering or cross-references,
Docmosis will automatically update these references in the resulting document, as part of the
document generation process.

Any fonts used in a template (i.e. fonts installed on the template author’s computer) should
also be available on the server where Docmosis is running. If a font is used in a template, that
is not available on the server where the document is being generated, then an unexpected
font with similar shape/size may be automatically substituted in the PDF documents or
inaccurate page references may occur when using indexes or tables of content.

2.4. Template Features

Modern word processors enable the creation of documents with support for high-quality
typesetting and layouts incorporating inline images. By automatically inheriting these

Version 4.9 | October 2025 Page 10 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

features, Docmosis provides the template author with a powerful automatic document
generation capability.

Aspects of the template that are relevant to Docmosis are detailed in this section, including:

 General features. Information about the general word processing features that can be
used to deliver high-quality layouts

 Advanced features. Details on the Docmosis features that can be incorporated into the
template

 Docmosis elements. Details of the Docmosis elements that interact with the document
generation process.

 Expressions. Details of the Docmosis math, logic and functions available within the
template.

2.4.1. General Features

Many document features are achieved simply by using well-known word-processing
documentation techniques. Docmosis recognizes and preserves common word processing
conventions such as:

 Specifying page size and orientation

 Setting font, font-size, bold, italic, underline, text colour

 Numbered and/or bullet lists

 Headers and footers

 Page numbering and table of contents

 Using static tables and images

There is no need to learn new techniques to use these features in Docmosis templates.

2.4.2. Advanced Features

To generate sophisticated documents a variety of field types are recognised and interpreted
by Docmosis. These fields can direct Docmosis by controlling:

 Insertion of text or image data into the body, headers and footers and tables

 Inclusion or exclusion of static or dynamic content

Version 4.9 | October 2025 Page 11 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

 Hyperlink Insertion

 Repeating of content

 Table row repetition or exclusion

 Table column removal

 Numbered and bullet list expansion

 Template merging.

This guide provides instructions and examples for including these advanced fields.

2.4.3. Docmosis Elements

All Docmosis “elements” are controlled by fields, except for image insertion which is
controlled by bookmarks or image properties. Each element is discussed in detail later in this
guide. In general, elements may be singular (such as a text insertion) or may be paired,
having a start and end marker.

2.4.3.1. Fields

The following table provides a quick reference to the elements and their field syntax. The
names of the fields must match exactly for the document generation to succeed.

Element Description

<<name>>

<<first-name>>

<<{[first-name]}>>

Replace this field by the data referenced by “name” or “first-name”.

Hyphenated names are supported and need to be enclosed in [and]
when used in expressions.

<<## and ##>>

<</* and */>>

Template-comments are delimited by the matching open and closing
sequences. Content inside comments is not processed and is
removed when creating documents.

<<op:name>>

Replace this field by the data referenced by “name”. If name is blank,
the entire paragraph is stripped (including any other content). This
makes the entire paragraph optional.

<<link:name>>

Insert a hyperlink at this location, using the URL from the data
referenced by "name". The data can optionally specify display text by
using the form: <text>|<url> e.g.:
"example|https://www.example.com"

Version 4.9 | October 2025 Page 12 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Element Description

<<html:name>>
Lookup “name” in the data and inject the data as HTML content into
the document at this location

<<pageBreak>>
Insert a page break at this point. This is an alternative to inserting an
actual page break in the template.

<<pageBreakNotLast>>
Insert a page break at this point unless in a repeating section and at
the last iteration of the repeat.

Image

Microsoft Word:
bookmarked with label
“img_name”

LibreOffice Writer:
image named
“img_name”

Replace an image in the template with the image data associated with
“name” using the default scaling settings (which is stretch).

Image stretched

bookmarked with label
or named
“imgstretch_name”

Replace an image in the template with the image data associated with
“name” and stretch the new image to match the template image
placeholder.

Image scaled to fit

bookmarked with label
or named
“imgfit_name”

Replace an image in the template with the image data associated with
“name” and fit the new image into the template image placeholder
preserving the new image aspect ratio.

<<barcode:name:…>>

Provide information for a barcode image in the template.

e.g. <<barcode:dispatchLabel:code128>> defines image
“dispatchLabel” as a code 128 barcode.

<<ref:sub1.docx>>
Insert the template named “sub1.docx” at this location.

Template coordination: include “sub1.docx”.

<<refLookup:name>>

<<refLookupOp:name>>

Lookup “name” in the data to get the name of the template to insert at
this location.

Template coordination: include the template identified by the data
item “name”.

The “Op” form does not raise an error if no name is resolved.

Version 4.9 | October 2025 Page 13 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Element Description

<<list:continue>>

To be used inside a sub-template numbered list. Specifies that
numbering should be continued on from an existing numbered list
when inserted.

<<fc:colour>>

Set the font-colour to use for all field-substitutions going forward from
this point in the template. Where "fc" is short for "field colour" and
“colour” is a html (hex) colour code. The specified “colour” can be a
literal, a field value or a template variable. A null value means the
colour is not changed.

e.g. the tag <<fc:#00ff00>> would make all fields render in green from
that point onwards. <<fc:myColour>> would look up the colour to use
in data under the key “myColour”.

Changing the colour of text fields can assist with branding (eg
colouring headings). It can also help highlight data that has been
injected to assist with different phases of testing or diagnosing issues.

<<coordinator:>>

Mark this template as a coordinator of other templates. This template
will not be part of the output, but instead specifies other templates to
be rendered.

<<coordinator:padToEv
enPage>>

<<coordinator:padToOd
dPage>>

Before then next referenced template, if necessary, insert a blank
page to make the output document an even or odd number of pages.

Currently this only applies to Docmosis Cloud and Tornado when it
combines PDF output into a single PDF document.

<<coordinator:newFile>>

At this point in processing, create a new file for the following content.
This means that, when creating PDF output multiple templates may be
combined into a collection of different PDF documents.

Currently this only applies to Docmosis Cloud and Tornado when it
combines PDF output into a single PDF document.

2.4.3.2. Repeating

Element Description Closing Element

<<rs_items>>

<<rs_$abc>>

Content between the opening element and closing
element is repeated whilst there is data associated
with “items” or the variable “abc”.

<<es_items>>
<<es_$abc>>
or

<<es_>> for any
match

<<list:reset>> To be used in a repeating section to force a

Version 4.9 | October 2025 Page 14 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Element Description Closing Element

numbered list to restart numbering (rather than
continue numbering from previous repeat).

<<rr_items>>

<<rr_$abc>>

In a table, the rows between the opening element
row and the closing element row are repeated
whilst there is data associated with “items” or the
variable “abc”.

<<er_items>>
<<er_$abc>>
or

<<er_>> for any
match

<<noTableRowAlter
nate>>

Disable automatic alternate-colouring of table rows.
This can appear in a table to disable for the table or
appear in the document body to disable for all
following tables.

2.4.3.3. Repeating With Stepping

Element Description

<<rs_items:step2>>
<<rs_items:step2down>>

<<rr_items:step2>>
<<rr_items:step2down>>

For the “items” data, repeat the content following until the matching
closing element. “rs_” applies to general content, “rr_” applies to
table rows.
“stepN” indicates that the data (“items”) should be iterated in steps of
N size. When stepping is used, the variables $i1, $i2,...$iN are
created automatically so items can be referenced in each step. This
allows an array of data to be presented across a rows of N columns.

“stepNdown” indicates that the data (“items”) should be iterated in
steps of N size and data should be presented in a “down”-ward
(columnar) manner. Variables $i1, $i2,... $iN are created
automatically. This allows an array of data to be presented in rows
of N across, and values are placed filling column 1 first, then filling
column 2 etc.

2.4.3.4. Repeating With Filters

Element Description

<<rs_persons:filter(ID<10)>>

<<rs_product:filter(startsWith(Code, ‘AWA’))>>

<<rr_persons:filter(ID<10)>>

<<rr_product:filter(startsWith(Code, ‘AWA’))>>

Repeat over the “persons” data after
filtering each item by the specified
expression.

Version 4.9 | October 2025 Page 15 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

2.4.3.5. Repeating With Sort

Element Description

<<rs_persons:sort(name)>>

<<rs_persons:sort(DESC, name)>>

<<rs_persons:sort(DESC,
CASE_SENSITIVE, NULLS_LAST, name)>>

<<rs_persons:sortStr(name)>>

<<rs_persons:sortNum(ID)>>

<<rs_persons:sortDate(DOB)>>

<<rs_persons:sortDate(DOB,
‘dd/MM/yyyy’, ‘German’, false)>>

<<rr_persons:sort(name)>>

<<rr_persons:sort(DESC, name)>>

Repeat over the given data after sorting by the
given data-field or expression.

Sort by “name” alphanumerically

Sort by “name” descending

Sort by “name” descending, case-sensitive, nulls
last

Sort by “name” as a string (not numerically smart)

Sort by “ID” as a number

Sort by “DOB” as a date using defaults

Sort by “DOB” using with format specifiers

Repeat over table rows using sort directives.

Sort types:

sort – alphanumeric sort

sortStr – simple string-based sort

sortNum – sort as numeric data

sortDate – sort as data data

Sort directives:

ASC | DESC – ascending or descending (default
ASC)

CASE_SENSITIVE | CASE_INSENSITIVE (default
sensitive)

NULLS_FIRST | NULLS_LAST

2.4.3.6. Repeating With Grouping

Element Description

<<rs_animals:group(species)>>

<<rs_persons:group(dateFormat(DOB,’MM
’,’dd/MM/yyyy’))>>

Repeat over “animals” grouped by “species”.

Repeat over “persons” grouped by “DOB”.

Version 4.9 | October 2025 Page 16 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Element Description

<<$groupKey>>

<<rs_$groupItems>>

<<rs_animals:group(species)>>
Species: <<$groupKey>>
<<rs_$groupItems>>
 Animal is <<name>>
<<es_>>
<<es_>>

<<rr_animals:group(species)>>
Species: <<$groupKey>>
<<rr_$groupItems>>
 Animal is <<name>>
<<er_>>
<<er_>>

Inside the repeat, $groupKey is the current
grouped term.

Inside the group repeat, repeat over the items in
the current group.

Typical use pattern for grouped data.

Typical use pattern across rows of a table.

2.4.3.7. Conditional

Element Description Closing Element

<<cs_name>>

<<cs_{expr}>>

<<cs_$abc>>

Content between the opening element and the
closing element is included or excluded depending
on the value associated with “name” or the
expression “expr” or the variable “abc”. The end tag
must match exactly, or may be anonymous:
<<es_>>.

<<es_name>>

<<es_{expr}>>

<<es_$abc>>

<<es_>>

<<cr_name>>

<<cr_{expr}>>

<<cr_$abc>>

Include the following table rows depending on the
value associated with “name” or expression “expr”
or the variable “abc”.

<<er_name>>

<<er_{expr}>>

<<er_$abc>>

<<er_>>

<<else_name>>

<<else_{expr}>>

<<else>>

This is the “else” tag related to a <<cs_>> tag to
provide the “else” and “else if” options to a
condition.

<<cc_name>>

<<cc_{expr}>>

<<cc_$abc>>

Include or exclude the table column containing this
field depending on the value associated with “name”
or the expression “expr” or the variable “abc”.

Version 4.9 | October 2025 Page 17 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

2.4.3.8. Nesting

Elements can use a “dot-notation” to look up nested / hierarchical data. The period “.”
character represents the delimiter between one level of data and the next.

For example, <<hotel.floor>> typically would refer to the floor within a hotel object.

2.4.3.9. Range Specifiers

Data elements can also be referenced by ranges of values Docmosis should look up. This
provides a fair amount of power within the template to select the values of interest. It
depends on the context of the element as to whether it is allowed to generate multiple values
(and Docmosis will flag errors where inappropriate use is made). For example, a repeating
section is expected to generate multiple values, but a simple lookup field is not.

The following table details the types of range specifier available.

Element Description

<<hotel[0]>> The first hotel (indexing starts at zero)

<<hotel[F]>> The first hotel (equivalent to index zero)

<<hotel[L]>> The last hotel

<<hotel[*]>> All hotels

<<hotel[F3]>> The first 3 hotels

<<hotel[L3]>> The Last 3 hotels

<<hotel[1,2,4]>> The hotels at indexes 1,2 and 4

<<hotel[1-3,L2]>> The hotels at indexes 1 to 3 inclusive and the last 2

<<hotel[0-L2]>> All but the last 2 hotels

<<hotel[3].floor[L].room[0].name>>
The name of the first room of the last floor of the
hotel at index 3

Version 4.9 | October 2025 Page 18 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

2.4.3.10. Built-In Variables

Docmosis provides some built-in variables to assist with common data lookup requirements.

Variable Description

<<$top>> or <<$root>>
The root of the data regardless of the current position or
context in the template.

<<$this>> or <<$current>>

The current source of data in the current position in the
template. This allows for anonymous data lookups from
arrays or collections such as <<$current[0]>>.

<<$parent>>

The parent or container of data in the current context of the
template. Allows data lookup in the current “hotel” when
the current context is a “floor” for example.

<<$nl>> A simple newline character

<<$nowMS>> Current UTC time in milliseconds since 1/1/1970

<<$nowUTC>> Current UTC time as in ISO 8601 format

<<$nowUTCFormat>>
The format used for $nowUTC which is:

 yyyy-MM-dd'T'HH:mm:ssX

<<$quot>> The single-quote character

<<$templateName>> The name of the current template being rendered

<<$templateFolder>>
The name of the folder containing the template being
rendered

<<$templatePath>>
The full path to the template being rendered (the
combination of the name and folder)

2.4.3.11. Built-In Variables When Repeating

These variables available in Repeating Sections and Repeating Rows:

Variable Description

<<$idx>>

Index into data

The current index into the source data, starting from a zero offset from the
beginning of the data range.

This is typically the same as $itemidx, however if repeating over a range of

Version 4.9 | October 2025 Page 19 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Variable Description

values that doesn’t start at zero (e.g. <<rs_names[3-5]>>), the $idx values
into the data would be 3,4,5.

<<$itemidx>>

Index in the
iteration

The current index into an iteration, starting from zero.

This is unaffected by the ranges of the data specified so the $itemidx values
for <<rs_names[3-5]>> is 0,1,2.

<<$num>> The same as $idx but starting from one.

<<$itemnum>> The same as $itemidx but starting from one.

<<$size>>
The size of the current repeating data set. For example, if repeating over all
hotels, $size would be the number of hotels.

<<$rownum>>

The current row number (starting at 1) when repeating (either repeating rows
or repeating sections). This is most useful when using the “stepping” directives
and the $itemnum is not suitable.

For more information about the use of "steps of N" see 3.11.1 Stepping Across
in Repeating Sections and 3.11.2 Stepping Down in Repeating Sections.

<<$rowidx>>

The current row number (starting at 0) when repeating (either repeating rows
or repeating sections). This is most useful when using the “stepping” directives
and the $itemidx is not suitable.

For more information about the use of "steps of N" see 3.11.1 Stepping Across
in Repeating Sections and 3.11.2 Stepping Down in Repeating Sections.

2.4.3.12. Built-In Variables When Stepping

The following variables available when “stepping” through repeating data:

Variable Description

<<$i1>>,<<$i2>>, … <<$iN>>

References to the Nth item when repeating data in "steps of
N". For example <<rs_people:step3>> steps through the
people in "steps of 3" and Docmosis automatically creates
variables $i1, $i2 and $i3 to access each element in the
step.

For more information about the use of "steps of N" see
3.11.1 Stepping Across in Repeating Sections and 3.11.2
Stepping Down in Repeating Sections.

<<$idx1>>, … <<$idxN>> Shorthand for $i1.$idx, … $iN.$idx

<<$num1>>, … <<$numN>> Shorthand for $i1.$num, … $iN.$num

Version 4.9 | October 2025 Page 20 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Variable Description

<<$itemidx1>>, … <$itemidxN>> Shorthand for $i1.$itemidx, … $iN.$itemidx

<<$itemnum1>>, … <$itemnumN>> Shorthand for $i1.$itemnum, … $iN.$itemnum

2.4.3.13. Built-In Variables When Grouping

These variables available when iterating over “grouped” data:

Variable Description

<<$groupKey>>
The key used for the current group of data. Eg if grouping by
ProductCode, the key might be “123”.

<<rs_$groupItems>>

<<rr_$groupItems>>

A repeating section or row containing the data within the
current group. Eg if grouping by ProductCode and the
$groupKey is “123” then this would be a list of every product
with the ProductCode “123”.

2.4.4. Expressions and Functions

Docmosis uses { and } to delimit an expression to be evaluated. Expressions are a powerful
way of retrieving and manipulating data within the template.

The syntax supports:

 Operators (e.g. + to add numbers and strings, * to multiply numbers)

 Functions (e.g. titleCase(name))

 Data lookup (get data by name)

 Literals (e.g. ‘abc’ or 123; additional spaces using ‘ ‘)

Expressions can be used for simple data insertion:

 <<{‘Ms. ’ + lastName}>>

and in conditional sections:

 <<cs_{itemCount < 10}>>

and where template-variables are set:

Version 4.9 | October 2025 Page 21 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

 <<$myVar={‘Ms. ’ + lastName}>>

The following table shows some examples of expressions in use. The sections to follow detail
the operators and functions available.

Element Description

<<{expr}>> Replace this field with the results of the given expression.

<<{10 * 3.0}>> Calculate 10 multiplied by 3.0

<<{amount * qty}>>
Lookup data elements “amount” and “qty” and multiply them
together.

<<{round(item/10)}>> Lookup data element “item”, divide it by 10 then round the result.

<<cs_{a<10}>>
Lookup data element “a” and see if it is less than 10 numerically. If
“a” is not numeric, a string comparison is performed automatically.

<<cs_{a='fred'}>>
Lookup data element “a” and see if it is equal to the String literal
“fred”.

<<cs_{$a!=10}>>

Lookup the variable “a” and see if it is not equal to the numeric value
10. If variable “a” does not resolve to a numeric value, a String
comparison is performed.

<<cs_{a=null}>> Lookup the data element “a” and determine if it's value is null

<<cs_{$a}>> Determine if the value of the template variable $a is true

2.4.4.1. Expression Operators

The following operators are supported by the Docmosis expression syntax:

Operator Description

(open parentheses

) close parentheses

+ addition (for numbers and strings)

- subtraction

* multiplication

/ division

% modulus

+ unary plus

- unary minus

Version 4.9 | October 2025 Page 22 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Operator Description

= equal (for numbers and strings)

== equal (for numbers and strings)

!= not equal (for numbers and strings)

< less than (for numbers and strings)

<= less than or equal (for numbers and strings)

> greater than (for numbers and strings)

>= greater than or equal (for numbers and strings)

&& boolean and

|| boolean or

! boolean not

Typical “Operator precedence” rules apply to determine the order of processing (highest to
lowest):

 (open parentheses,) close parentheses

 + unary plus, - unary minus, ! boolean not

 * multiplication, / division, % modulus

 + addition, - subtraction

 < less than, <= less than or equal, > greater than, >= greater than or equal

 = equal, != not equal

 && Boolean, and

 || boolean or

Version 4.9 | October 2025 Page 23 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

2.4.4.2. Logic and Transform Functions

The following general functions are supported by the Docmosis expression syntax:

Function Synopsis

ifBlank

A function to use a default value if the given element is null or empty.

ifBlank(key, default)

where:

key = the data value

default = the value to use if key is blank

For Example:

<<{ifBlank(name, ‘Not Specified’)}>>

Will lookup “name” in the data if null or empty it will return “Not
Specified”.

isBlank

A function to determine if the given element is null or empty.

isBlank(key)

where:

key = the data value

For Example:

<<{isBlank(name)}>>

Will lookup “name” in the data and return true if null or empty,
otherwise false. This can be useful for conditional sections:

<<cs_{isBlank(address)}>>

 There is no address

<<es_>>

Version 4.9 | October 2025 Page 24 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Function Synopsis

map

A function to map one value to another.

map(key, test1, replace1 [,test2, replace2 ...]
[,default])

where:

key = the data value

test1 = the first value to compare with the key

replace1 = the value to use if test1 matches the key

test2 = the second value to compare with the key

replace2 = the value to use if test2 matches the key

...

default = the value to use if no matches are made

For Example:

<<{map(gender, ‘M’, ’Male’, ‘F’, ‘Female’, ‘Other’)}>>

Will lookup “gender” in the data and if it equals “M” the value “Male”
will be used.

mapi

A function to map one value to another ignoring the case of the key
and test values (case insensitive).

mapi(key, test1, replace1 [,test2, replace2 ...]
[,default])

where:

key = the data value

test1 = the first value to compare with the key

replace1 = the value to use if test1 matches the key

test2 = the second value to compare with the key

replace2 = the value to use if test2 matches the key

...

default = the value to use if no matches are made

For Example:

<<{mapi(gender, ‘M’, ’Male’, ‘F’, ‘Female’, ‘Other’)}>>

Will lookup “gender” in the data and if it equals “M” or “m” the value
“Male” will be used.

Version 4.9 | October 2025 Page 25 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

2.4.4.3. Text Functions

The following text functions are supported by the expression syntax:

Function Synopsis

char

Returns the character based on a given code

charAt (code)

where:

code = the character code. Examples below.

For Example, all the following insert the copyright symbol:

Decimal <<{char(169)}>>

Hex <<{char(‘0xa9’)}>>

Html decimal <<{char(‘©’)}>>

Html hex <<{char(‘©’)}>>

Java/Json format <<{char(‘\ua9’)}>>

All return the copyright symbol ©

charAt

Returns the character at the requested position in the source string.

charAt (string, position)

where:

string = the string to lookup the character in

key = the position of the required character, starting
from 0 for the first position.

For Example:

<<{charAt(‘abcdefg’,3)}>> returns the character “d”

<<{charAt(idNumber,6)}>>

will lookup “idNumber” in the data. If idNumber= “ID474-K234” then the
character returned will be “K”.

Version 4.9 | October 2025 Page 26 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Function Synopsis

endsWith

Checks to see if a string ends with a given string.

endsWith (mainString, subString)

where:

mainString = the string to check

subString = the string to look for at the end of
mainString

For Example:

<<{endsWith(‘The first string’, ‘ing’)}>> returns the value “true”

Useful when creating a conditional section. For example, this conditional
section will only display the “serialNum” field if it ends with “ZZZ”.

<<cs_{endsWith(serialNum, ‘ZZZ’)}>> <<serialNum>> <<es_>>

equalsIgnoreCase

Compares to strings, regardless of case.

equalsIgnoreCase (string1, string2)

where:

string1 = the first string

string2 = the second to compare to the first string

For Example:

<<{equalsIgnoreCase (‘Bob’, ‘bob’)}>> returns the value “true”

indexOf

Returns the starting index of one string inside another.

indexOf (string, find [, startIdx])

where:

string = the string to scan

find = the string to find

startIdx = an optional search starting index

For Example:

<<{indexOf(‘Bob Mathews’, ‘Mat’)}>>

returns “4.0”

Version 4.9 | October 2025 Page 27 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Function Synopsis

length

Returns the length of a string.

length (string)

where:

string = the string to check the length of

For Example:

<<{length(‘Bob’)}>> returns the number “3.0”

Useful when creating a conditional section. For example, this conditional
section will only display the text if “refNo” is set.

<<cs_{length(refNo)>0}>> Ref Num : <<refNo>> <<es_>>

replace

Replaces characters in the source string with new characters.

replace (string, oldChar, newChar)

where:

string = the string

oldChar = the character to find in the string

newChar = the character to use in place of the oldChar

For Example:

<<{replace(customerVIN,’o’,’0’)}>>

If the data contains customerVIN = “JHMAB5227EC8oo65o”

Then the replace function will turn all the letter “o” chars to the number “0”
so the result looks like this : “JHMAB5227EC800650”

Version 4.9 | October 2025 Page 28 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Function Synopsis

replaceStr

Replaces strings in the source string with the new string.

replaceStr(string, searchFor, replaceWith [, ignoreCase])

where:

string = the string

searchFor = the character(s) to find in the string

replaceWith = the character(s) to use in place of the
searchFor

ignoreCase = true|false to ignore the case when searching.
Defaults to false (ie case-sensitive).

For Example:

<<{replaceStr(address, ’street’,’St.’, true)}>>

If address=”Matheson street”, returns “Matheson St.”

replaceFirst

Replaces the first occurrence of source string with the new string.

replaceFirst(string, searchFor, replaceWith [,
ignoreCase])

where:

string = the string

searchFor = the character(s) to find in the string

replaceWith = the character(s) to use in place of the
searchFor

ignoreCase = true|false to ignore the case when searching.
Defaults to false (ie case-sensitive).

For Example:

<<{replaceFirst(‘Two times Two’, ’two’, ’2’, true)}>>

Results in ‘2 time Two’.

countStr Count occurrences of a string within another string.

countStr (string, searchFor [, ignoreCase])

where:

string = the string

searchFor = the character(s) to find in the string

ignoreCase = true|false to ignore the case when searching.
Defaults to false (ie case-sensitive).

For Example:

<<{countStr(‘Bob’, ’b’, true)}>>

Version 4.9 | October 2025 Page 29 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Function Synopsis

Returns “2”.

split

Split a string into parts that can be displayed separately.

split (string, splitChar, index)

where:

string = the string

splitChar = the character to use as a delimiter

index = once split into parts, index identifies the part
to be used – counting from 0.

For Example:

<<{split(‘John|Mathews|47|Approved’ , ’|’ , 1)}>>

returns “Mathews”

<<{split(cityStateZIPCountry , ’;’ , 1)}>> with

cityStateZIPCountry = "Charleston;West Virginia;29402;United States"

will return “West Virginia”

squote

Replace all double-quote characters in the given string with single-quotes. All
forms of double-quotes are replaced. This is handy since the templates use
single quotes for delimiters.

squote(string)

where:

string = the string in which to replace double-quotes

For Example:

<<{squote(‘This is Amy”s.’)}>> returns “This is Amy’s.”

Version 4.9 | October 2025 Page 30 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Function Synopsis

startsWith

Checks to see if a string starts with a given string.

startsWith (mainString, subString)

where:

mainString = the string to check

subString = the string to look for at the start of
mainString

For Example:

<<{startsWith(‘The first string’, ‘The’)}>> returns the value “true”

Useful when creating a conditional section. For example, this conditional
section will only display the “VIN” field if it starts with “1VW”.

<<cs_{startsWith(VIN, ‘1VW’)}>> <<VIN>> <<es_>>

substring

Display a subsection of a string given starting and finishing indexes.

substring(string, start, finish)

where:

string = the string

start = the position in the string that will now become
the first character. Indexing starts at 0.

finish = the position in the string that marks where to
cut the string. The character before the cut makes it in
to the substring. The finish character doesn’t.

For Example:

<<{substring(‘0123456’ , 2 , 5)}>>

returns “234”

<<{substring(LatLong , 0 , 6)}>> with

LatLong = “31.9088983S115.8049265E”

will return “31.908”

left Display a subsection of a string given the finishing index.

left(string, finish)

where:

string = the string

finish = the position in the string that marks where to
cut the string. The character before the cut makes it in
to the substring. The finish character doesn’t.

For Example:

Version 4.9 | October 2025 Page 31 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Function Synopsis

<<{left(‘The quick brown fox jumps over the lazy dog.’, 5)}>>

returns “The q”

right

Display a subsection of a string given starting index.

right(string, start)

where:

string = the string

start = the position in the string that will now become
the first character. Indexing starts at 0.

For Example:

<<{right(‘The quick brown fox jumps over the lazy dog.’, 4)}>>

returns “dog.”

titleCase

Changes the string so that the first character of each word is a capital letter.

titleCase (string)

where:

string = the string to convert

For Example:

<<{ titleCase (‘bob mathews’)}>>

returns “Bob Mathews”

<<{titleCase (firstName+ ‘ ’ + lastName)}>>

with data of firstName = “bob” and lastName = “MATHEWS”

also returns “Bob Mathews”

toAlpha

A function to convert a given number to a letter in the sequence:

a, b, c, … z, aa, bb, cc, … zz, aaa, bbb, etc.

toAlpha(key)

where:

key = the data value

For Example:

<<{toAlpha(index)}>>

when index = “3”, returns “c”.

when index = “28", returns “bb”.

Version 4.9 | October 2025 Page 32 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Function Synopsis

toAlpha2

A function to convert a given number to a letter in the sequence:

a, b, c, … z, aa, ab, ac … az, ba, bb, etc.

toAlpha2(key)

where:

key = the data value

For Example:

<<{toAlpha2(index)}>>

when index = “3”, returns “c”.

when index = “28", returns “ab”.

toLowerCase

Returns the string using all lower case characters.

toLowerCase (string)

where:

string = the string to convert

For Example:

<<{toLowerCase(‘Bob Mathews’)}>>

returns “bob mathews”

toUpperCase

Returns the string using all upper case characters.

toUpperCase (string)

where:

string = the string to convert

For Example:

<<{toUpperCase(‘Bob Mathews’)}>>

returns “BOB MATHEWS”

toRoman

A function to convert a given number to a roman numeral

toRoman(key)

where:

key = the data value

For Example:

<<{toRoman(index)}>>

when index = “2”, returns “ii”.

when index = “29", returns “xxix”.

Version 4.9 | October 2025 Page 33 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Function Synopsis

toSentence

Adjusts the given string converting it to sentence case.

toSentence(string)

where:

string = the string to convert

For Example:

<<{toSentence(‘a little. ditty’)}>> returns “A little. Ditty”

trim

Removes leading and trailing spaces from a string.

trim (string)

where:

string = the string

For Example:

<<{trim(productID)}>>

Where productID = “ 12CVCV123-454 ”

returns “12CVCV123-454”

2.4.4.4. Numeric Functions

The following numeric functions are supported by the expression syntax.

Any of the number literals (e.g.:“153.57”) in the examples below could be replaced with a
“name” that Docmosis will look for in the data.

Function Synopsis

abs

Returns the absolute value of the number.

abs (number)

For Example:

<<{abs(-153.57)}>>

returns “153.57”.

<<{abs(temp)}>>

If the data has:

temp = “-273.15”

returns “273.15”

Version 4.9 | October 2025 Page 34 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Function Synopsis

ceil

Returns the next largest whole number.

ceil (number)

For Example:

<<{ceil(153.57)}>> returns “154.0”

floor

Returns the next smallest whole number.

floor (number)

For Example:

<<{floor(153.57)}>> returns “153.0”

isNumber

Returns true if the given parameter is numeric:

isNumber (value1)

For Example:

<<{isNumber(53)}>> returns “true”

<<{isNumber(‘53.5111’)}>> returns “true”

<<{isNumber(‘-1.0e20’)}>> returns “true”

max

Returns the larger of the two numbers.

max (number1, number2)

For Example:

<<{max(53.5,23.1)}>> returns “53.5”

min

Returns the smaller of two numbers.

min (number1, number2)

For Example:

<<{min(53.5,23.1)}>> returns “23.1”

Version 4.9 | October 2025 Page 35 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Function Synopsis

numFormat

Format a number based on the format provided and the locale.

numFormat (value, format [, locale [,applyLocaleToInput [,
formatIsLocalized]]])

where:

value = the number to format

format = the format to apply. E.g.: ‘#,###.00’

locale = optional locale to use. Country or language name
or code. E.g.: ‘GERMAN’, ‘USA’.

applyLocaleToInput = whether to apply the locale to the
input value. Default is true. Set to false when value is
numeric data or data that is not parseable in the given
locale.

formatIsLocalized = whether to apply the locale-specific
interpretation to the given format. Default is true. Set
to false when the format is specified in no localized
format. For example, when specifying the thousands-
separator value in the FRENCH locale, by default the
format uses a non-breaking space (Unicode \u00A0) to
represent the separator. When this is false, ‘,’ is used
to separate numbers into thousands.

See section 4.1 Formatting Numbers for full formatting syntax.

numToDollars

Format a number based on the format provided and the locale.

numToDollars(value)

where:

value = the number to format

If the number is an integer, just the dollar amount is written. If the number
has a fractional component, the number with be rounded to the nearest
even 2 decimal places and the “cents” value will be written.

If the number is text with the $ symbol embedded the $ symbol is ignored.

Supports numbers up to 9.2 quintillion.

For Example:

<<{numToDollars(100)}>> returns “one hundred dollars”

<<{numToDollars(123.457)}>> returns “one hundred twenty three
dollars and forty six cents”

Version 4.9 | October 2025 Page 36 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Function Synopsis

numToText

Write out the given number using English words

numToText (value [, form])

where:

value = the number to format

form = ‘andLast’ - (default) write the last “and” in the
text

form = ‘andAlways’ – write the “and” in all places in the
text

form = ‘andNone’ – brief – don’t write the “and” at all.

Supports numbers up to 9.2 quintillion.

For Example:

<<{numToText(123)}>> returns “one hundred and twenty three”

<<{numToText(123, ‘andNone’)}>> returns “one hundred twenty three”

ordinal

Write out the given number as an ordinal using either numbers or English
words.

Ordinal (value [, form])

where:

value = the number to format

form = ‘short’ - (default) write as numeric digits plus
suffix (eg “123” as “123rd”)

form = ‘suffix’ – write only the suffix text (“st”, “rd”,
“th”)

form = ‘long’ – write out the number in words and include
the “and” word in the final text

form – ‘longNoAnds’ – write out the words but don’t use
“and” to join any part of the text

form – ‘longAllAnds’ – write out the words and use “and”
to join in all locations.

Supports numbers up to 9.2 quintillion.

For Example:

<<{ordinal(123)}>> returns “123rd”

<<{ordinal(123, ‘suffix’)}>> returns “rd”

<<{ordinal(123, ‘long’)}>> returns “one hundred and twenty third”

<<{ordinal(123, ‘longNoAnds’)}>> returns “one hundred twenty third”

Version 4.9 | October 2025 Page 37 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Function Synopsis

pow

Returns the power of two numbers.

pow (number1, number2)

For Example:

<<{pow(7,2)}>> returns 7 to the power of 2, so “49.0”

random

Returns a random number between 0 and 1.

random()

For Example:

<<{round(random()*100)}>>

returns a random number between 0 and 100.

round

Rounds the number to the specified number of places.

round (number [, places])

where:

number = the number to round.

places = the number of decimal places required. If not
specified then round to zero decimal places.

For Example:

<<{round(153.75)}>>

returns “154”

<<{round(153.73455,2)}>>

returns “153.73”

sqrt

Returns the square root of a number

sqrt (number)

For Example:

<<{sqrt(81.0)}>> returns “9.0”

Version 4.9 | October 2025 Page 38 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

2.4.4.5. Date Functions

The following date functions are supported by the expression syntax:

Function Synopsis

dateAdd

Add (or subtract) an amount from a given date.

dateAdd (date, amt, units [,outputFormat [,inputFormat]])

where:

date = the starting date value

amt = the amount to adjust by (may be negative)

units = the units of amt (milli/millis, second/seconds,
minute/minutes, hour/hours, day/days, week/weeks,
month/months, year/years)

outputFormat = optional – the output format to display the
result.

inputFormat = optional – the format used to decode the
input data value. Docmosis will attempt to decode the
given date using various formats if this parameter is not
specified.

For Example:

<<{dateAdd(’10 Jul 2020’, 5, ‘day’)}>> returns “15 Jul 2020”

<<{dateAdd(’10 Jul 2020’, -2, ‘months’)}>> returns “10 May 2020”

<<{dateAdd(’10 Jul 2020’, 1, ‘month’, ‘MMMM’)}>> returns “August”

<<{dateAdd(’07-10-2020’, 2, ‘year’, ‘yyyy’, ‘MM-dd-yyyy’)}>> returns “2022”

dateDiff

Calculates the difference between two dates in the requested units.

dateDiff (date1, date2, units [, inputFormat])

where:

date1 = the starting date/time

date2 = the finishing date/time

units = the units in which to report the result
(milli/millis, second/seconds, minute/minutes, hour/hours,
day/days, week/weeks, month/months, year/years)

inputFormat = optional – the format used to decode the
input dates. Docmosis will attempt to decode them using
various formats if this parameter is not specified.

For Example:

<<{dateDiff(’10 Jul 2020’, ’18 Jul 2020’)}>> returns “8”

Version 4.9 | October 2025 Page 39 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Function Synopsis

dateFormat

Format the value based on the output and input Formatting strings.

dateFormat (value [, outputFormat [, inputFormat [,
outputLocale [, inputLocale [, outputFormatLocalized [,
inputFormatLocalized]]]]]])

where:

value = the data value to format

outputFormat = optional – the output format to apply

inputFormat = optional – the format used to decode the
input data value

outputLocale = optional – the locale to use for rendering
the date

inputLocale = optional – the locale to use for parsing the
input date

outputFormatLocalized = optional – indicates whether the
outputFormat string should be interpreted using characters
for the specified outputLocale. Default=false.

inputFormatLocalized = optional – indicates whether the
inputFormat string should be interpreted using characters
for the specified inputLocale. Default=false.

With regards to localized formats, if using the FRENCH
locale, then the *FormatLocalized flag should be set to
true if the data format specifies, for example, the year
using ‘a’ rather than ‘y’.

See section 4.2 Formatting Dates for full formatting syntax.

Version 4.9 | October 2025 Page 40 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

2.4.4.6. Locale Functions

The following locale-related functions are supported by the expression syntax:

Function Synopsis

locale

Get the specific ID for a given locale string. This is most useful during
development and testing and can be used to determine specifically what
Locale Docmosis will use when a language or country code is specified as a
locale parameter.

locale([spec])

where:

spec = the language or country name or code to lookup

For Example:

<<{locale()}>> returns the default locale in use, typically “en_US” (English,
United States)

<<{locale(‘GERMANY’)}>> returns “de_DE”

localeInfo

Get the info for a locale obtained by the given locale string. This is most
useful during development and testing and can be used to determine
specifically what Locale Docmosis will use when a language or country code
is specified as a locale parameter, and what attributes it has.

localeInfo([spec])

where:

spec = the language or country name or code to lookup

For Example:

<<{locale()}>> returns info about the default locale in use:

“Locale:[default] country=United States, lang=English, variant=, id=en_US”

<<{locale(‘GERMANY’)}>> returns

“Locale:[GERMANY] country=Germany, lang=German, variant=, id=de_DE”

localeDatePattern For the given pattern and locale, display the “localized” version of the
pattern. This can help diagnose issues with locale-specific patterns.

localeInfo(pattern [, locale])

where:

pattern = the non-localized pattern: eg dd-MMMM-yyyy

locale = the locale for which to display the localized
pattern

For Example:

<<{localeDatePattern(‘dd-MMMM-yyyy’, ‘GERMANY’)}>> returns tt-MMMM-

Version 4.9 | October 2025 Page 41 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Function Synopsis

uuuu

2.5. Error Handling

Docmosis offers two ways to deal with errors encountered in templates during the document
generation process:

1. Dev Mode. Write the error in to the resulting document - errors are highlighted in red
and where possible footnotes are added for each error, to offer details and suggestions
on how to resolve the error.

2. Prod Mode. Return an error and abort document generation. No document is produced
and the error will contain details of the first problem that was found.

This behaviour is not controlled by the template, rather specified at the time the document is
being generated, since it is expected to be related to the type of environment in which
Docmosis is being used.

2.6. Useful Diagnostics

Docmosis offers a method to view the data it has received using the special Docmosis field
<<dump:…>>. This can be used to output the entire set of data being processed, or just a
subset of the data. This is useful when diagnosing template problems and for seeing exactly
what data values are available in the template.

Docmosis will attempt to display the data in the format it was provided in. For example, json
format when the data supplied is json.

To dump the entire contents sent to Docmosis use <<dump:$top>> or <<dump:$root>>.
Note that this could result is a lot of data being output.

To dump a subsection of the data, reference the element name, eg <<dump:address>>
would just output the address object of the data.

The dump field is aware of the current “context” and will render data relative to that context.
For example:

<<rs_InvoiceItems>>

Version 4.9 | October 2025 Page 42 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

<<dump:$this>>

<<es_>>

Will dump the current InvoiceItem each time the loop is iterated.

2.6.1. Diagnostic tools

The following tools can be used to help diagnose template issues:

Element Description

<<dump:name>>

<<dump:$builtInVariable>>

Dump the data as it is understood into the document for diagnostics
purposes.

Lookup “name” in the data and dump the data object into the document
at this location. Built in variables can also be used, eg:

<dump:$top>>

<dump:$parent>>

<dump:$this>>

Version 4.9 | October 2025 Page 43 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

3. CREATING DOCMOSIS TEMPLATES

The basic steps for creating a template are:

1. create the layout, boilerplate/static content and typesetting characteristics of a
document;

2. add the Docmosis elements (fields).

The boilerplate content can include sophisticated word processing structures using headings,
lists, tables, static images, and headers and footers.

This chapter provides instructions for the inclusion of the supported fields. It is divided into
sections that discuss the basic aspects through to some advanced techniques. In general, the
information does not cover typesetting of documents but does provide information where
necessary. Most of the information in this chapter is relevant to both word processors: where
they differ, information is provided for each case.

All the procedures in this chapter assume that you understand the techniques required
for the particular word processor and that you have a document open in the word
processor on which you can perform the procedure.

In addition, the procedures use menu-based instructions for consistency.

3.1. Incorporating Docmosis Elements

Docmosis "fields" can be added at any location in a document template. Each field must have
an appropriate and unique name that associates it with an element of the data that will be
supplied to Docmosis.

During document generation, Docmosis expects the data to have values and logical structures
that match the names and structure of the elements in the template. For example: nested
items in the template should also be nested in the data structures.

Consideration should be given to how the content of the template will “move” during the
document generation process. It is best practice to keep all text, images, tables, etc. in-line, so
that the content moves and changes in a predictable way, just as if the content was cut from
the template or pasted into the template.

Docmosis recognizes fields created using:

 plain text fields (i.e.: created just by typing into the template)

Version 4.9 | October 2025 Page 44 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

 merge fields in Microsoft Word

 input fields in LibreOffice Writer

Plain text fields are the simplest to use since there are no dialogs to interact with and “what
you see is what you get”.

3.2. Using Plain Text Fields

Plain text fields are the easiest method of creating fields in Docmosis templates. By default,
the start of a field is denoted by << [less-than less-than] and the end of a field by >> [greater-
than greater-than].

The default start of field prefix ‘<<’ and the end suffix ‘>>’ can be changed to any start
or end pattern you prefer.

The remainder of this document assumes the default prefix and suffix are being used.

To create a field that looks up "personName" in the data, simply type <<personName>> into
the template.

To keep the text of a template simple, Docmosis is strict about identifying plain text fields and
will ignore invalid fields, assuming it is just static text in the template. For example,
<<personName> will be ignored because a closing ">" character is missing. A single space
between the << and the name, or the name and >> is allowed, but more spaces will also mean
the field is not recognised.

The following table shows typical errors that will result in a field not being recognised.

Example Field Valid Problem

<<personName>> YES Correct field. Docmosis will identify and substitute.

<<personName> NO Missing trailing >

<personName>> NO Missing leading <

<< personName>> NO 2 spaces after leading <<

<<personName >> NO 2 spaces before trailing >>

< <personName>> NO Space after leading <

<<personName> > NO Space before trailing >

Version 4.9 | October 2025 Page 45 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

3.3. Using the Built-in Word Processor Fields

Docmosis also supports the use of the "document fields" supplied by Microsoft Word (merge
fields) and LibreOffice Writer (input fields).

The advantages of using these document fields include:

 less work if the template already includes merge fields or input fields.

 Text can be displayed that is different from the actual name of the data item used by
Docmosis. For example, the following field can appear in the template as:

 «friends»

but may in fact be referencing the following piece of data:

 «friends[0].lookupName»

This means the field can appear smaller or more succinct in the template than if a plain
text field was used.

The disadvantages of using document fields include:

 a field can be confusing or misleading because its true lookup value is hidden.

 more effort is required to work with these fields via popup dialogs or switching field
codes on and off.

 with Word merge fields, the "display" value can be accidently lost (replaced with the
underlying lookup value) if the fields in the document are "updated".

 depending upon the version of the chosen word processor users may not be able to
create fields with spaces or special characters in the name.

 it can be difficult to simply insert a merge field as Microsoft Word attempts to guide the
user to link the field to a data source – which is not required. This means users need to
either type the field codes manually, or copy a merge field from another document then
edit it to reference the data item required.

3.3.1. Creating a Field Using Microsoft Word Merge Fields

It is generally simpler to use plain text fields as described in section 3.2 above.

Microsoft Word has a built-in mail merge feature that uses MergeFields as the placeholders
for the dynamic content. Docmosis will recognize a MergeField and will use the “name” of the
MergeField to look up the data item.

Version 4.9 | October 2025 Page 46 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

By default, Microsoft Word displays the name of the MergeField in the template. The text that
is displayed can be adjusted without changing the name of the merge field. Simply by editing
the text that appears between the angle brackets. Please note that if the field codes are later
auto-updated in the document, the “display” name will be reverted back to the “real” name.

In Microsoft Word, to view the data item that the merge field is referencing, instead of
its display value, place the cursor in the merge field and press Alt-F9.

3.3.2. Inserting a Field Using LibreOffice Writer Input Fields

It is generally simpler to use plain text fields as described in section 3.2 above.

Docmosis will recognize an Input Field and will use the “Reference” value of the Input Field to
lookup the data item.

LibreOffice Writer does NOT show a pair of angled brackets (« … ») around the Input
Field.

To change the text displayed in the template you can type directly in to an input field.
Right click on an Input Field and select Edit Fields to change the data item that the Input
Field is referencing.

3.4. Using Text Substitution

The simplest (and often most useful) fields in a Docmosis template are the ones that look up
data and place it into the document (essentially, this is a one-to-one match). Wherever a field
occurs, Docmosis will inject the actual data value into that location in the finished document.

The inserted data inherits all the typesetting characteristics that are applied to the field, such
as font settings (bold, underline, etc.) and paragraph settings (before/after spacing, etc.).
Docmosis will replace the field with the data supplied as if it was selected and typed over by
hand. If the lookup data contains new-line characters, Docmosis will create new paragraphs
in the resulting document.

If no data item is found matching the field name, the field is removed.

Docmosis has a powerful expression processing engine allowing users to create fields that
perform calculations within the template. The expression syntax supports literals, data-

Version 4.9 | October 2025 Page 47 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

lookups, operators and functions. The result of evaluating an expression will be displayed,
instead of simply the piece of data. Expression processing is enabled by using curly brackets,
like this “<<{“ and this “}>>”, inside the normal field delimiters. See 2.4.4 Expressions and
Functions for a complete reference of all supported operators and functions.

3.4.1. Simple Field Name Syntax

Simple fields that look up an item of data have the following naming rules:

1. Must start with a letter

2. Can include letters, numbers, underscores and hyphens

3. Can be surrounded by square brackets [and]

For example, the following are valid fields:

<<personName>>

<<personName24>>

<<person-name>>

<<[person-name]>>

Note that when using a hyphenated name, like “person-name”, the hyphen becomes
ambiguous in expressions (it could be intended to be the subtraction operator). In this case,
the surrounding [and] brackets are required to identify the fields. For example:

<<{[last-value]-[first-value]>>

In simple fields that are not expressions, the [and] are optional because it assumed to be a
hyphenated field name.

3.4.2. Optional Paragraph Fields

Optional paragraph fields operate like the fields described earlier, except if there is no data
for the value, the entire paragraph containing the field is removed.

HINT: Turn on hidden formatting symbols, like the paragraph marker (¶), to see where
a paragraph starts and finishes.

Version 4.9 | October 2025 Page 48 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Optional paragraphs are specified with the prefix “op:”, for example:

<<op:addressLine2>>

Optional paragraph fields are useful for condensing output (not leaving behind blank lines)
when populating data. Consider a typical address block:

<<name>>

<<addr1>>

<<addr2>>

<<city>>, <<country>>

If there is no value for addr2, the above sequence would produce output that looks like:

My Company

123 The Boulevarde

San Francisco, USA

The blank line in the middle of the above output is possibly undesirable.

Using an optional paragraph field with <<addr2>> would look like this:

<<name>>

<<addr1>>

<<op:addr2>>

<<city>>, <<country>>

Which means that in the output the blank line will not appear:

My Company

123 The Boulevarde

San Francisco, USA

Optional paragraph fields are also useful for removing paragraphs from numbered or bullet
lists. Consider:

1. I have one <<item1>>

2. I have one <<item2>>

3. I have one <<item3>>

Version 4.9 | October 2025 Page 49 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

With data “item2” = “orange” and “item3” = “banana”, this would result in:

1. I have one

2. I have one orange

3. I have one banana

Clearly point #1 above is incomplete because there is no item1 data. Changing to optional
paragraph fields resolves this:

1. I have one <<op:item1>>

2. I have one <<op:item2>>

3. I have one <<op:item3>>

With data “item2” = “orange” and “item3” = “banana”, this would result in:

1. I have one orange

2. I have one banana

Optional Paragraphs will strip the entire paragraph containing the “op:” instruction –
from the end of the last paragraph marker (¶) to the next paragraph marker (¶). If you
have other content in the paragraph, it will also be removed.

3.4.3. HTML

Docmosis supports the insertion of HTML content. The following field:

<<html:myHtmlData>>

Will cause myHtmlData to be fetched from the data and injected as HTML. For example, if
myHtmlData contained:

<h1>My Heading</h1>

Then the text “My Heading” will appear as Heading 1 in the output document.

HTML can be arbitrarily complex and not all HTML will be rendered into a document as
well as it would in a browser. Typically, using inline styles (rather than style
declarations) will produce good results. The intention is to allow simple HTML
“snippets” to be inserted via data where this is advantageous to the application using
Docmosis.

Version 4.9 | October 2025 Page 50 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

3.5. Using Docmosis Variables

Variables can created in templates to hold the value of a single piece of data or as a reference
to an object of data by using the $ (dollar) symbol in front of a variable name.

This can be useful to store the value of a field with a long name, in a shorter variable name,
for example:

<<$n=longField.ThatIsTooBigToFit.InaSmallSpace.name>>

<<$n>>

In the example above the entire first line will be removed from the document because it is on
a line by itself and its only purpose is to set the variable $n. Only the second line will produce
output in the finished document which will be the content of $n.

Variables can be used to store the results of a calculation. Note the {} curly brackets around
the expression:

<<$amount={quantity*unitPrice}>>

Once a variable is set, it is visible at the “level” at which it is set. This means that if a variable is
only used for the first time inside a repeating section or a set of repeating rows, then it will
only be available while inside that “loop”. To have a variable to retain its value outside of a
loop, use it once before the start repeating field, like $subTotal in this example:

<<$subTotal=0>>

<<rs_items>>

 The cost of item <<$num>> is <<cost>>.

<<$subTotal={$subTotal+cost}>>

<<es_>>

 The cost of all the items is <<$subTotal>>.

Note, $num in the example above is one of the built-in variables discussed in section 2.4.3.10
Built-In Variables.

A variable can be used to store an object, and once it is used, regardless of where in the
template, it will provide visibility to the contents of the object that it referenced. For example,
a variable named $firstPerson, could be used to store the first person in the person data.

Version 4.9 | October 2025 Page 51 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Then from deep inside a repeating section the name of the first person is retrieved using the
$firstPerson variable.

<<$firstPerson=people[0]>>

<<rs_people>>

 Current person = <<name>>. First = <<$firstPerson.name>>

<<es_people>>

Variables can also be referenced using var_ instead of $. This means <<$name>> is
equivalent to <<var_name>>. This is particularly useful for bookmarking images using
variables in Microsoft Word, where you cannot use the $ symbol in the bookmark
name.

3.5.1. Check if a variable has been set

There are scenarios where the need to reference a variable without knowing if it has already
been initialized, for example in a sub template called by various master templates. If the
variable <<$company>> was used as the first line in a sub template but it had not been
initialized previously, then Docmosis would return an error.

In this type of situation Docmosis offers a less-strict use of a variable, called a forgiving
lookup: <<$?…>>. In the example the field could instead be <<$?company>> which would
return a blank if not set (rather than an error).

Combining a forgiving variable lookup with a conditional section and the isBlank function
would be a common pattern for working with a variable that might not have been set:

<<cs_{isBlank($?company)}>>

N/A

<<else>>

<<$company>>

<<es_>>

3.6. Using Images

Docmosis can insert images at arbitrary locations in documents. Instead of using fields to
identify the location for an image substitution, Docmosis uses the word processor’s image

Version 4.9 | October 2025 Page 52 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

handling features. By handling images this way, the template can precisely define how the
image will be placed and bordered within the resulting document.

As each word processor works slightly differently, there are specific methods for setting up
the Docmosis code element:

 In Microsoft Word, Docmosis uses the Bookmarks feature to identify a name for an
image; and

 LibreOffice Writer supports the identification of images directly, using a Name property.

In the preceding example, a borderless table is used for layout purposes.

This activity doesn’t discuss the actual images that you will publish, only the placeholder
image. You may create and use your own image but for your convenience, a
placeholder image is provided as part of the Docmosis distribution.

You are free to use it without restriction.

Use Only Inline Images in Microsoft Word

Docmosis cannot support floating images in Microsoft Word because it uses the bookmarks
feature to assign a name to an image placeholder. When positioning an image using the
floating position settings, Microsoft Word removes the bookmark. There are other limitations

Version 4.9 | October 2025 Page 53 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

to how Docmosis supports images, particularly in terms of overlapping with text and other
images. This will not cause issues for typical documents.

Using images that sit inline with the text means that at the time a document is generated any
surrounding text or fields will move in a more predictable way.

Image File Size

When a placeholder image is inserted, the image is embedded in the template. This means
there is a copy of the image at every location in which it is placed (not simply a single,
referenced copy). To limit the overall size of the template file and to improve the
performance of a document generation, use relatively simple and small placeholder images to
identify the locations without compromising on print quality if the document is to be printed.

Image Placeholder Naming Convention

Image placeholder names are identified using special prefixes. These prefixes are a useful
way to distinguish those items that are specific to the Docmosis application and enable users
to use the bookmarking and naming features for other items that aren’t part of a document
generation.

The prefixes available are:

Prefix Example Effect

img_ img_image1

The image is substituted with the supplied image1 and
default scaling is applied. The default scaling is "stretch"
and may be changed by Docmosis properties or by
parameters when rendering the document.

imgstretch_ imgstretch_image1

The image is substituted with the supplied image1 and
stretch scaling is always applied. The image is stretched
to be the same size and shape as the place holder image
in the template.

imgfit_ imgfit_image1

The image is substituted with the supplied image1 and
the image will be scaled to fit the template placeholder
whilst preserving image1's aspect ratio.

Inserting an Image Element in Microsoft Word

Version 4.9 | October 2025 Page 54 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

1. Position the insertion point at the location of the image.

2. Select Insert > Pictures.

3. In the Insert Picture dialog box, navigate to the location of the placeholder image and
select it in the list of files.

4. Click Insert.

5. When the image appears in the template, select it and use the reshaping handles to
adjust the dimensions of the image.

6. Make sure that the image is selected and click Insert>Bookmark.

7. In the Bookmark dialog box, type img_image1 into the Bookmark Name field.

8. Click Add.

Both bookmark names and image names must be unique in a template since both Microsoft
Word and LibreOffice Writer force the name to be unique. If a requirement is to reference the
same image data in the template multiple times, different names will have to be specified by
which the image can be referenced. This can be achieved by creating unique template-
variables to reference the same image data, then bookmark using the unique template-
variable names. For example:

<<$pic1=photo>>

<<$pic2=photo>>

creates two template-variables referring to the “photo” data. The image bookmarks can then
refer to the unique $pic1 (var_pic1) and $pic2 (var_pic2) names as required.

Microsoft Word wraps the content of the bookmark in light coloured, square brackets.
To see the bookmark in place, set the Bookmarks option in the Microsoft Word Options
dialog box.

Microsoft Word Bookmark names can’t contain “$” characters. To use a Docmosis
variable in a bookmark name, use “var_” instead of “$”. For example, use “var_myVar”
instead of “$myVar”.

Also, MS Word Bookmarks names can't contain "." characters, so it cannot directly use
"nested" lookups (e.g. person[0].photo). You can use Docmosis variables to
overcome this in conjunction with the tip above about referencing variables in
bookmarks.

For example, use:

Version 4.9 | October 2025 Page 55 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

 <<$myImage=person[0].photo>>

in your template body to set the variable, and

 img_var_myImage

as the bookmark name to link the image data to the template image.

Inserting an Image Element in LibreOffice Writer

1. Position the insertion point at the location of the image.

2. Select Insert > Image.

3. In the Insert Picture dialog box, navigate to the location of the placeholder image and
select it in the list of files.

4. Click Open.

5. When the image appears in the template, select it and use the reshaping handles to
adjust the dimensions of the image.

6. Make sure that the image is selected and click Format > Image > Properties.

7. In the Picture dialog box, select the Options tab.

8. Type img_image1 into the Name field.

9. Click OK.

Both bookmark names and image names must be unique in the template, since both Word
and Writer force the name to be unique. To reference the same image in the template
multiple times, different names will have to be used by which the image can be referenced.
This can be achieved by creating unique template-variables to reference the same image data,
then bookmark using the unique template-variable names. For example:

<<$pic1=photo>>

<<$pic2=photo>>

creates two template-variables referring to the “photo” data. The image names can then refer
to the unique $pic1 and $pic2 names as required.

Version 4.9 | October 2025 Page 56 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

3.6.1. Image Hyperlinks

Images can be made “clickable” by setting the hyperlink details in the image. Both Word and
LibreOffice support this feature.

In Word, select the image then right-click and select “Link” or “Edit Link”. The value can be
specified in the “Address” field.

In LibreOffice, right click the image and select “Properties”. Navigate to the hyperlink tab and
the value can be specified in the URL field.

To have Docmosis set the link dynamically when creating the document, specify the link as:

dmlink:myKey

and Domosis will look up myKey in the data for the link to use. A template variable may also
be used to obtain the link value indirectly:

dmlink:$myVar

$myVar must have previously been set so its value is available.

3.7. Creating Barcodes

Docmosis can generate barcodes and insert them into the output document. Barcode
insertion is the same as image insertion except extra information is provided to specify the
type of barcode, resolution etc.

3.7.1. Supported Barcode Formats

The following barcode formats are supported:

 Code39

 Code128

 ITF14

 IMB

 QR Codes are also supported (see section 3.8 Creating QR Codes below).

Version 4.9 | October 2025 Page 57 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

3.7.2. Typical Barcode Example

As a typical example, put a placeholder image into the template and “mark” it (with a name or
bookmark as per section 3.6 above):

Image marked as ‘imgfit_dispatchLabel’.

The data should supply the barcode value followed by the barcode type, separated by a colon
(e.g. in JSON format):

"dispatchLabel":"1234567:code128"

By including the barcode type “code128” as part of the data, Docmosis would then assume
this data item is a barcode and generate a code 128 barcode with the value “1234567”:

3.7.3. Using a “barcode” Field to Specify Barcode Settings

In the above example, the placeholder image determines the size, position and name for the
barcode. The rest of the information is provided by the data at render-time.

It is also possible to provide barcode information with a “barcode” field in the template. A
barcode field starts with “barcode:”.

Continuing the above example, the template could specify barcode setting like this:

<<barcode:dispatchLabel:code128>>

This indicates that dispatchLabel will be a code 128 barcode. The data provided at render-
time could then simply be the value (e.g. in JSON format):

"dispatchLabel":"1234567"

Version 4.9 | October 2025 Page 58 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

The <<barcode:…>> settings field can appear anywhere in the template, either before or
after the placeholder image.

In the Template the
placeholder image is marked
“img_dispatchLabel” and the
template may also include a

“<<barcode:” field

Data
(JSON example)

Result

“dispatchLabel”:”1234567:
code39”

A code39 barcode image with value
123456.

The data provided the barcode type
and value.

<<barcode:dispatchLabel
:code39>>

“dispatchLabel”:”1234567”

A code39 barcode image with value
123456.

The template specified the barcode
type.

The data provided the barcode value.

“dispatchLabel”:”1234567:
code39:dpi=1200”

A code39 barcode image with value
123456 and resolution 1200 dpi.

The data has specified all
configuration.

<<barcode:dispatchLabel
:code39:dpi=1200>>

“dispatchLabel”:”1234567”

A code39 barcode image with value
123456 and resolution 1200 dpi.

The template has specified the
barcode type and resolution.

The data has specified only the value.

<<barcode:dispatchLabel
:1234567:code128>>

A code128 barcode image with value
1234567.

The template has specified the
barcode value, type and resolution.
This means the barcode is valid
without any data and is always the
same unless overridden by data.

Version 4.9 | October 2025 Page 59 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

3.7.4. Barcode Tips

When trying to work out the settings for the barcode, this is the recommended process:

1. Position the placeholder image in the template using the size and orientation that works
for the template – the bigger the better for reliable scanning.

2. Use “imgfit_” to mark the placeholder image (e.g. imgfit_dispatchLabel) to preserve
the aspect ratio of the generated barcode. Use the “imgstretch” to force the barcode to
match the placeholder precisely but this will likely reduce the accuracy of the barcode
and may make it harder to scan. Make the barcodes very small at a high resolution but
this may impact the ability to be scanned.

3. Let Docmosis apply the default settings first and see if that produces a good result. If
not, then start experimenting. The height, module width and wide factor are settings
that change the width of the resulting barcode.

4. The DPI setting typically should be 200 or higher. If a barcode is generated at below 100
dpi the quality is typically too low to scan. The default is 600.

5. Test scanning the output barcode to ensure size/DPI settings produce a machine-
readable barcode.

3.7.5. Barcode Settings in Detail

Anything about a barcode can be specified in the template with a barcode field, including the
value:

<<barcode:dispatchLabel:1234567:code128>>

Other settings can be appended. For example:

<<barcode:dispatchLabel:1234567:code128:dpi=800:orientation=90>>

As mentioned previously, any barcode settings in the template can be overridden by the data
supplied on a ‘per-render’ basis. For example, the DPI resolution can be changed dynamically
by the data (e.g. in JSON format):

"dispatchLabel":"1234567:dpi=1200"

The data provided at render time will override any settings specified in a barcode field
in the template.

Version 4.9 | October 2025 Page 60 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

The following settings are common to the supported barcodes.

Common Settings

Name Shorthand Description Example Default Value

moduleWidth mw

Barcode module width as a double
value. This defines the width of the
narrow bars of the barcode. Typical
values are in the range 1.0 – 3.0

mw=2.2
0.19

1.10 for ITF14

doQuietZone dqz
Whether or not the quiet zone will
be displayed around the barcode

dqz=true False2

quietZoneWidth qzw The width of the quiet zone in mm. qzw=2.0 12.0 for ITF14

quietZoneHeight qzh The height of the quiet zone in mm. qzh=2.0

height h

The height of the barcode in mm.
Depending on the type of barcode,
the barcode value, the module
width and other settings, the height
influences also the width of the
resulting barcode.

h=30.0
10.0

40.0 for ITF14

orientation o

The orientation of the barcode in
degrees, 0 is horizontal. Values
allowed are 0, 90, -90, 180, -180,
270, -270.

o=90 0

fontSize fs

The size of the font for the
displayed barcode value. Zero will
remove the display of the value.

fs=0

dpi dpi

The number of dots per inch
(resolution) of the barcode. The
higher the resolution the bigger the
resulting document and processing
time. Typically, use the minimum
that suits the use of the barcode
(e.g. taking into account the printer
quality).

dpi=1200 600

Code 128 Specific Settings

Name Shorthand Description Example Default Value

none

Version 4.9 | October 2025 Page 61 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

ITF 14 Specific Settings

Name Shorthand Description Example Default Value

wideFactor wf

Barcode wide factor as a double
value. This defines the factor that
wide bars are wider than narrow
bars. Typical values are in the range
1.0 – 3.0

wf=2.0 2.5

bearerBarWidth bbw The width of the bearer bar in mm. bbw=2.0 1.0

displayChecksum dc

Whether or not a checksum should
be displayed in the human-readable
part of the barcode.

dc=true false

checksumMode cm
The code 39 checksum mode: add,
auto, check or ignore

cm=add

3.8. Creating QR Codes

Docmosis can generate QR codes and insert them into output documents. QR code insertion
is very similar to image insertion and the barcodes described above using a placeholder
image and optionally a <<qrcode:>> field to set defaults in the template for the related QR
code.

3.8.1. Typical QR Code Example

As a typical example, put a placeholder image into the template and “mark” it (with a name or
bookmark as per section 3.6 above):

Image marked as ‘qrcode_dispatchLabel’.

At the time of rendering, the data supplies the QR code value:

"dispatchLabel":"https://url.to.com/my/dispatchLabel/1233"

Version 4.9 | October 2025 Page 62 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Docmosis then renders the barcode into the size and placing of the QR code:

3.8.2. Using a “qrcode” Field to Specify Default Settings

In the above example, the placeholder image determines the size, position and name for the
resulting QR code. All other settings are defaulted (such as resolution and error correction
level).

Default settings can be adjusted for a given QR code image by using an optional <<qrcode:>>
field. The field can set specific settings described in the following sections.

Continuing the above example, the template could specify QR Code dpi setting like this:

<<qrcode:dispatchLabel:dpi=200>>

This indicates that dispatchLabel should use a resolution of 200 dpi instead of the default.

The <<qrcode:…>> field can appear anywhere in the template, either before or after the
placeholder image. It links to the correct placeholder by name.

3.8.3. QR Code Settings in Detail

Anything about a QR code can be specified in the template with a qrcode field, including the
actual value:

<<qrcode:dispatchLabel:https://my.domain.com/:dpi=200:ec=M>>

Settings can also be overridden by the data supplied during a render call. For example, the
DPI resolution can be changed dynamically by the data (e.g. in JSON format):

"dispatchLabel":" https://my.domain.com/:dpi=800"

The data provided at render time will override any settings specified in a qrcode field in
the template and then system defaults.

Version 4.9 | October 2025 Page 63 of 119

https://my.domain.com/:dpi=800

DOCMOSIS-JAVA TEMPLATE GUIDE

The following settings are supported for QR codes.

Common Settings

Name Shorthand Description Example Default Value

dpi dpi

The number of dots per inch
(resolution) of the barcode. The
higher the resolution the bigger the
resulting document and processing
time. Typically, use the minimum
that suits the use of the barcode
(e.g. taking into account the printer
quality).

dpi=1200

600

(1200 max)

errorCorrection ec
The Error Correction level L, M, Q
or H.

ec=M M

encoding en The encoding to use en=UTF-8 UTF-8

3.9. Creating Active Hyperlinks

Docmosis allows hyperlink to be inserted dynamically into documents.

To create a hyperlink, insert a field starting with "link:" (or "link_"). For example, the
following field:

<<link:myWebSpace>>

will create a hyperlink by looking up the value for the hyperlink using myWebSpace in the data.

If the data provides the hyperlink address (eg: in JSON format):

"myWebSpace":"http://www.example.com"

That would create this: http://www.example.com in the finished document.

The text to be displayed for the hyperlink may be different from the URL of the link. This is
achieved by using the pipe (|) symbol in the data to separate the display name from the
hyperlink value.

For example, if data included the: display text, a pipe symbol (|) and then the hyperlink (eg: in
JSON format):

"myWebSpace":"Visit our website|http://www.example.com"

Version 4.9 | October 2025 Page 64 of 119

http://www.example.com/

DOCMOSIS-JAVA TEMPLATE GUIDE

That would create this: Visit our website in the finished document.

Note that in all cases:

 the field name identifies the data item
 the data provides the hyperlink, and optionally includes the display text.

3.10. Using Conditional Sections

Conditional content is content that will appear, or be removed, in the final document
depending upon values in the data. If the specified condition is met, the content within the
matching conditional section will appear in the document.

An example of the application of conditional content might be in a product description such
as that for a motor vehicle in the following illustration.

The conditional sections will display the data that is appropriate for each condition. Metric
data will be displayed in the Metric section and Imperial data will be displayed in the Imperial
section. Each conditional section is defined using a pair of fields: a start field and an end field.
The general syntax for a conditional section is:

<<cs_conditionName>>

 [The text and elements of the conditional section.]

Version 4.9 | October 2025 Page 65 of 119

http://www.example.com/

DOCMOSIS-JAVA TEMPLATE GUIDE

<<es_conditionName>> or simply <<es_>>

The conditional start and end fields are removed from the resulting document and if each
field is on a line by itself, the entire line will be removed.

Conditional sections can use expressions, variables and range specifiers. For example:

<<cs_{(someValue[0]+someValue[1])>10}>>

<<cs_{$phoneNum!=null&&$phoneNum!=’’}>>

See the tables in 2.4.3 Docmosis Elements and 2.4.4 Expressions and Functions for more
information.

Note that the { } brackets are applied to the expression only – not including the “cs_”.
The expression should evaluate to true or false.

To create a conditional section:

1. Position the insertion point in an empty paragraph at the starting location of the
conditional section.

2. Insert the opening condition element into the empty paragraph.

3. Add the boilerplate content and other Docmosis elements into the subsequent
paragraphs in the document.

4. Insert the closing condition element into an empty paragraph following the conditional
content.

5. Repeat steps 1 through 4 for as many conditions as required.

Conditional sections also allow for alternative conditions to be tested using an if-then-else
construct. Most simply, a conditional section can test something and else can be used to
embody all non-matches to the conditional section test. For example:

<<cs_{name=’Jill’}>>

This is Jill’s content

<<else>>

This is anyone but Jill’s content

<<es_>>

The above sequence will display “This is Jill’s content” if name is “Jill”, otherwise it will display
“This is anyone but Jill’s content”.

Version 4.9 | October 2025 Page 66 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

The else field can also test data elements and use expressions the same way as the cs_ field.
For example:

<<cs_{name=’Jill’}>>

This is Jill’s content

<<else_{name=’Jen’}>>

This Jen’s content

<<else>>

This is anyone else’s content

<<es_>>

The above tests name against “Jill” then “Jen” displaying the appropriate information if either
of those conditions are true. If name is any other value, the else will be used to display the
appropriate content.

3.11. Repeating Sections

In a document, a repeating section is a group of elements in succession where the content
changes each time but the layout and format is the same. Docmosis supports several forms of
repeating sections: block-level, tables and lists.

Tables and lists are special forms of repeating sections. They are discussed after this
section. This section deals specifically with block-level repeating sections.

The most common form of repeating content in Docmosis templates is the “block-level”
repeat and it uses the Docmosis repeating section elements. Repeating sections can contain
any content desired, and it will be repeated whilst there is data to be displayed.

The general syntax for a repeating section is:

<<rs_repeating-section-name>>

 [The text and elements of the repeating section.]

<<es_repeating-section-name>> or simply <<es_>>

The example below shows a repeating section named IDSets, and it contains a “block” that is
a mixture of static text (“Name:”, “Position”, etc.) and fields (<<name>>, <<position>>, etc.).
This block will be repeated as many times as there is data associated with IDSets.

Version 4.9 | October 2025 Page 67 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

The repeating start and end fields are removed from the resulting document and if each field
is on a line by itself, the entire line will be removed.

Repeating sections can be “nested” inside other repeating sections to any depth desired.
Repeating sections can use variables and range specifiers as appropriate. See the section
2.4.3 Docmosis Elements for more information on “else” fields, range specifiers and nesting.

To create a repeating section:

1. Position the insertion point in an empty paragraph at the starting location of the
repeating section.

2. Insert the opening repeating section element into the empty paragraph.

3. Add the boilerplate content and other Docmosis elements into the subsequent
paragraphs in the template.

4. Insert the closing element into an empty paragraph following the repeated content.

When looping over a repeating sections Docmosis will automatically create some built-in
variables, such as $itemidx and $itemnum. The value of $itemidx changes each time the
data is repeated and the variable will contain the number of times the loop has been
repeated, starting from zero. The value of $itemnum contains the number of times the loop
has been repeated, starting from one.

For example, given 3 "names" in a “people” array, <<$itemidx>> can be used as follows:

<<rs_people>>

<<$itemidx>> - <<name>>

<<es_people>>

Version 4.9 | October 2025 Page 68 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

To generate output that might look like this:

0 - James

1 - Jenny

2 - Julie

whereas using <<$itemnum>> would result in:

1 - James

2 - Jenny

3 - Julie

3.11.1. Stepping Across in Repeating Sections

Docmosis supports the concept of repeating in "steps". Each “step” is a smaller subset of the
complete array of data. For example, consider a simple array of “people” objects as follow:

“James”, “Jenny”, “Julie”, “Katie”, “Kim”, “Kerry”

in the data. Docmosis can place them on the page in a 3-across layout like this:

The “stepping” is done in the template as follows:

Version 4.9 | October 2025 Page 69 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

The ":step3" directive tells Docmosis to move through the "people" data in groups of 3.
Docmosis automatically creates the $i1, $i2 and $i3 variables to correspond to the first,
second and third elements. For the second row, $i1, $i2 and $i3 will correspond to the fourth,
fifth and sixth elements, and so on.

Docmosis will automatically create the $i… variables, corresponding to the size of the step
being used. For example: for a ":step10", variables $i1, $i2, up to $i10 will be created.

If a 4-across layout is required instead, this is easily changed in the template by using
":step4" and adding the 4th column in the template to layout as required:

And the resulting document (using the same data) would appear as follows:

Just as Docmosis automatically creates the $itemidx and $itemnum variables in a normal
repeating section, when stepping Docmosis will automatically create: $itemidx1,
$itemidx2... and $itemnum1, $itemnum2... variables which relate to the $i1, $i2... variables.
The $itemidx1.. variables start at zero (i.e. 0,1,2,3...). The $itemnum1... variables start at one
(i.e. 1,2,3...).

Version 4.9 | October 2025 Page 70 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

3.11.2. Stepping Down in Repeating Sections

In the same way that Docmosis can present the data in smaller subsets “across” a page, it can
also arrange those subsets but moving “down” the page instead.

This means that Docmosis will repeat the items down column1 first, then down column 2,
column3 and so on. Docmosis will automatically balance the data into the right number of
rows based on the number of steps.

Given the same data as before:

“James”, “Jenny”, “Julie”, “Katie”, “Kim”, “Kerry”

but wish to show the data down the columns, rather than across, the ":step4down" directive
can be used in the template like this:

In the generated document, notice that the first two item, James and Jenny, appear in column
one. The third item, Julie, is displayed at the top of column 2 and so on:

The “step” functions allow the template to control more of the presentation options given the
same set of data.

The above examples use the repeating sections (<<rs_...>>) notation, but stepping can
also be used with repeating rows (<<rr_...>>) below.

Version 4.9 | October 2025 Page 71 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

3.11.3. Sorting in Repeating Sections

Docmosis supports sorting of data in a repeating section. For example, consider a simple
array of “people” objects with the following names:

“Chloe”, “Sam”, “Ben”, “Catherine”, “Andy”, “Andrew”

Docmosis is able to sort by these names before displaying the data. In a template use the
:sort (or :sortStr) directive as follows:

In the generated document, notice that the list of names is now in sorted order:

To instead display the above names in sorted descending order use: ":sort(DESC, name)".
The default order is ascending, which can explicitly be stated with ASC, eg ":sort(ASC,
name)".

Version 4.9 | October 2025 Page 72 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

This example is sorted by a field in the data, but sorting by an expression is also possible. For
example to sort by a person’s full name, use the following sort ":sort(lastName + ‘, ’ +
firstName)" to combine the first and last names before performing the sort.

Docmosis can also sort in case sensitive or case insensitive mode. Take, for example, the
following simple array of “business” objects with the following names:

“ECM Electronics”, “eCentral”, “aXcelerate”, “Accendant”, “ACME”

In this example the case used is important for the order of these objects. By default,
Docmosis will sort in CASE_INSENSITIVE mode, it is possible to sort in CASE_SENSITIVE
mode instead, which can be done with the following syntax: ":sort(CASE_SENSITIVE,
name)".

Another consideration to make is how to handle missing data. Given a list of “business”
objects with the following websites:

“ecm.org”, null, “axcelerate.com.au”, “accendant.biz”, null

Where will the missing values end up? By default, Docmosis will put missing data (“nulls”) up
front, if sorting ascending (ASC); and it will put missing data last, if sorting descending (DESC).
But this can be controlled using the keywords NULLS_FIRST or NULLS_LAST, eg
":sort(NULLS_LAST, website)".

Note that the above keywords can also be combined in a single sort, for example:
":sort(DESC, CASE_SENSITIVE, NULLS_FIRST, name)".

The :sort keyword is an alphanumeric sort, interpreting the text and numeric parts of data.
This sort understands that “abc11” comes after “abc2”. There are three other sort types:
string, numeric and date.

A simple string sort is identified using:sortStr. String sorting is simple but if unlike
alphanumeric sort above, it would sort “abc11” before “abc2”. eg ":sortStr(name)".

The directive :sortNum can be used to explicitly sort numerical data. This is especially useful
when the data is a mixture of number types. For example, take the following list of numbers:

“2.0”, “-1”, “0”, “2e10”, “-1e-10”, “1E-10”, “0.1”

Let’s compare the result of a :sortNum to the regular alphanumeric :sort, take the following
template:

Version 4.9 | October 2025 Page 73 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

The data above would result in the following output:

Notably there is a mistake in the regular sort result on the right. But the numerical sort, on
the left, is in the correct order.

Docmosis also supports sorting by dates, with the keyword :sortDate. Consider a list of
“people” objects with the following dates of birth:

“20/Feb/1986”, “09/Dec/1972”, “01/Oct/1999”, “19/Mar/1987”,

“19/Feb/1986”, “29/Nov/1970”

It is possible to sort on these dates in a template. Note that Docmosis needs to be instructed
about what inputFormat the dates are in, for more info on date formatting please see 4.2
Formatting Dates. Take the following template:

Version 4.9 | October 2025 Page 74 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Using the data above the result is the following sorted output:

The date sorter also allows specification of inputLocale and inputFormatLocalized.

inputLocale is used to specify the locale used for interpreting the input date (eg ‘italian’),
and inputFormatLocalized is used to indicate whether or not to interpret the
inputFormat string using the specified inputLocale. For example, to apply a German locale
use the following syntax ":sortDate(date, ‘yyyy-mm-dd’, ‘german’, true)".

Finally, multiple sorts can be specified to sort by one value, then by another. For example:

<<rs_people:sort(category):sort(lastName)>>

Version 4.9 | October 2025 Page 75 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

3.11.4. Filtering in Repeating Sections

Docmosis supports filtering data in a repeating section using an expression. This is similar to
using a conditional section to only display the data that meets a conditional expression, see
3.10 Using Conditional Sections. Consider a simple list of grocery “product”, each containing a
field of “name” and “type”:

Name: “Apple”, “Lettuce”, “Orange”, “Carrot”, “Pear”

Type: “Fruit”, “Vegetable”, “Fruit”, “Vegetable”, “Fruit”

To just display the Fruit items, add filtering to products whose type equals “Fruit”:

And this would result in just the “Fruit” items being output:

3.11.5. Grouping in Repeating Sections

“Grouping” data is supported in Docmosis. To do so, a grouping expression needs to be
specified to tell Docmosis what element of the data to group by. Take the previous example of
grocery “product”:

Name: “Apple”, “Lettuce”, “Orange”, “Carrot”, “Pear”

Type: “Fruit”, “Vegetable”, “Fruit”, “Vegetable”, “Fruit”

Version 4.9 | October 2025 Page 76 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Similar products can be grouped together using the field “type”, eg ":group(type) ". Once
the data has been grouped together, use the special keyword $groupItems to repeat over
the items within the group. Docmosis also sets the variable $groupKey to identify the key
used to form the current group of items (the current “type” in the above example).

In a template it would look like this:

In this example, the Docmosis tag, "rs_product:group(type)", is used to repeat over the
“product” data, grouped by the “type” of product. Two groups are formed, one for the type
“Fruit” and one for type “Vegetable” and hence the repeat will loop twice.

Inside the repeat, <<$groupKey>> is used to output the key used for the current group(one of
the values of “type”). Next, the template repeats over the items in each group using the
<<rs_$groupItems">> variable and displays the “name” of each product within the group.
The output will look like this:

Version 4.9 | October 2025 Page 77 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

“Grouping” can also use expressions to form the groups. This can be a very powerful tool. For
example, with a simple list of “people” objects, group together people with the same birth
month with the following expression:

":group(dateFormat(DOB, ’MM’, ’dd/MMM/yyyy’))"

3.11.6. Combining Repeating Section Directives

Many of the repeating section directives above can be combined together, including:

:sort():filter()

:sort():group()

:filter():group()

:sort():filter():group()

:sort():stepN[down]

:filter():stepN[down]

:group():stepN[down]

:sort():filter():stepN[down]

:sort():group():stepN[down]

Version 4.9 | October 2025 Page 78 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

:filter():group():stepN[down]

:sort():filter():group():stepN[down]

These can also be combined with range specifiers, see Section 2.4.3.9 Range Specifiers.

3.12. Using Tables

Using fairly simple table syntax, detailed table layouts can be created in output documents. In
addition to being able to insert text and images into table cells, using the methods already
described, the table-specific Docmosis elements can control:

 including or excluding of groups of rows;

 repeating groups of rows;

 removing columns.

3.12.1. Conditional Rows

A row, or a group of consecutive rows, can be removed from a table using conditional row
elements. The following example uses the <<cr_hasFriends>> and <<er_hasFriends>>
fields to identify a single row in a table. The row will appear or be removed depending on the
value of hasFriends.

In this case, if the data indicates that hasFriends is true, then the row containing “Jimmy has
some friends” would appear in the finished document. In all cases, the rows containing the
fields <<cr_hasFriends>> and <<er_hasFriends>> will be removed:

Version 4.9 | October 2025 Page 79 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

End markers for conditional rows can also be defined without the name. In the above
example, the field <<er_hasFriends>> could also be simplified to <<er_>>.

3.12.2. Repeating Rows

Rows of a table can be repeated whilst there is data to repeat. The following example will list
all of the friends of Jimmy using one row for each friend, showing their name in one column
and job in another.

In this case, while the data can supply information for friends, the row containing the
“lookup friend” information will be rendered. In all cases, the rows containing the markers
<<rr_friends>> and <<er_friends>> will be removed.

Version 4.9 | October 2025 Page 80 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

3.12.3. Stepping in Repeating Rows

Docmosis supports the concept of repeating in "steps". Each “step” is a smaller subset of the
complete array of data.

For example, the ":step3" directive can be used with a repeating row field as follows:
<<rr_friends:step3>>, tells Docmosis to move through the data in groups of 3. Docmosis
automatically creates the $i1, $i2 and $i3 variables to correspond to the first, second and
third elements. For the second row, $i1, $i2 and $i3 will correspond to the fourth, fifth and
sixth elements, and so on.

The examples above of Stepping Across in Repeating Sections (section 3.11.1) and Stepping Down
in Repeating Sections (section 3.11.2) also apply to data displayed in a table using Repeating
Rows.

3.12.4. Sorting in Repeating Rows

Docmosis supports sorting of data in repeating rows. For example, taking a simple list of
“people” objects, "rr_people:sort(name)" will sort the list of people by the name field.

The examples above of Sorting in Repeating Sections (section 3.11.3) also apply to data
displayed in a table using Repeating Rows.

3.12.5. Filtering in Repeating Rows

Docmosis supports filtering data in repeating rows using an expression. This is similar to
using a conditional section to only display the data that meets a conditional expression, see
3.10 Using Conditional Sections. For example, taking a simple list of “animal” objects,
"rr_animal:filter(type=’bird’)" will filter a list of animals to just the “bird” type.

Version 4.9 | October 2025 Page 81 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

The examples above of Filtering in Repeating Sections (section 3.11.4) also apply to data
displayed in a table using Repeating Rows.

3.12.6. Grouping in Repeating Rows

Docmosis supports “grouping” data together in repeating rows using a field or expression. For
example, to group together a simple list of “animal” objects by “type” might look like this:

The examples above of Grouping in Repeating Sections (section 3.11.5) also apply to data
displayed in a table using Repeating Rows.

3.12.7. Combining Repeating Row Directives

Many of the repeating row directives above can be combined together, including:

:sort():filter()

:sort():group()

:filter():group()

:sort():filter():group()

:sort():stepN[down]

:filter():stepN[down]

:group():stepN[down]

:sort():filter():stepN[down]

:sort():group():stepN[down]

Version 4.9 | October 2025 Page 82 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

:filter():group():stepN[down]

:sort():filter():group():stepN[down]

These can also be combined with range specifiers, see Section 2.4.3.3 Range Specifiers.

3.12.8. Alternating Row Colours and Border Controls

The template for repeating rows also provides some tricks for colour and borders. The rules
are as follows:

1. If a cell of a row inside a set of repeating rows has a background colour different to that
of the corresponding cell of the starting row (the row with the <<rr_xxx>> element),
then the background colour for that cell will alternate between that of the starter row
and its own background colour. This allows everything from plain tables, to alternating
rows to ad-hoc alternating patterns.

2. The starting row (the row with the <<rr_xxx>> element) determines the top border of
the first repeating row. The ending row (the row with the <<er_xxx>> element)
determines the bottom border of the last row to be rendered. This applies on a cell-by-
cell basis as for the background colouring. This allows for highly configurable borders to
be specified.

The following example creates a bounding border encapsulating all the repeating rows
(including the marker rows, and alternates for the background colour).

Notice in the result below the alternating background colours and the border wraps all cells
collectively.

Version 4.9 | October 2025 Page 83 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

End markers for repeating rows can also be defined without the name. In the above
example, the field <<er_friends>> could also be simplified to <<er_>>.

More advanced examples are provided in section 3.12.11 Advanced Table Structures.

3.12.9. Disabling Row Alternating

Sometimes alternating row colouring is not desirable. In this case, Docmosis templates can
disable the row colouring by using the <<noTableRowAlternate>> directive. The following
rules apply the scope of effect of the directive:

1. if <<noTableRowAlternate>> appears anywhere in a table, the alternating colouring is
disabled for that table.

2. If <<noTableRowAlternate>> appears in the body text of the template (outside of any
table) all following tables will have no alternating colouring.

Version 4.9 | October 2025 Page 84 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

3.12.10. Conditional Columns

A template may indicate columns in a table that are to be conditionally removed. The width
of the table remains as fixed in the template and the space recovered by the removal of the
column is spread across the remaining columns. The following example shows a Docmosis
conditional column element (<<cc_showJobs>>) at the top of the second column.

When rendered, this removes the column entirely where the data indicates that showJobs is
false.

Version 4.9 | October 2025 Page 85 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

The following example uses expressions to conditionally remove two columns from the table.
Examining the Trial 2 and Trial 3 columns shows the expressions in the conditional
column fields <<cc_{nt>1}>> and <<cc_{nt>2}>>, where “nt” will contain a number
representing the “number of trials”.

If the incoming data has nt = 1 then the conditions for the Trial 2 and Trial 3 columns
will be false and the columns will be removed. Note that the table width remains the same.
This is shown in the following example output:

If the incoming data has nt = 2, then the Trial 2 column will remain in the resulting
document, but the Trial 3 column is removed:

Version 4.9 | October 2025 Page 86 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

3.12.11. Advanced Table Structures

Docmosis supports the nesting of repeating and conditional content in table structures.

The following example shows three levels of nested data, namely “hotel”, “floor” and “room”
to print out the room details for each floor for each hotel.

The example above is somewhat extreme and it would often be more natural to represent the
structure in a combination of repeating sections and tables with repeating rows. The
following template is equivalent but is not providing the entire structure within a single table:

Version 4.9 | October 2025 Page 87 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

3.13. Using Lists

Docmosis infers repetition when there are one or more elements in paragraphs formatted as
a list using the ‘bullets and numbering’ features. As long as there is data to populate, the list
will be filled with items.

In the following example, the field uses the [*] notation. The field is formatted as a
numbered list, which will be automatically expanded.

Docmosis interprets the field in two parts: a repeating component and a lookup component.
The repeating component contains a range specifier that specifies multiple values. In this
example, the friends data item is using the [*] range specifier to use “all” friends. The
second part of the field, friend, is the name used to lookup the data to display.

As another example of how the field is split, consider the following template:

Version 4.9 | October 2025 Page 88 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

The element now is in a bullet list style rather than numbered. It has a repeating component
friends[F].pets[*] meaning all pets of the first friend and a lookup component type.
The resulting document is shown below where the friend has a dog and a parrot.

Docmosis only allows a single component of the element to be a multi-valued range. For
example, Docmosis would not allow an element friends[*].pets[*] since this would
repeat at multiple stages and typically would be a mistake.

To create a list:

1. Position the insertion point at the location of the first list item.

2. Format the paragraph as a list item (bulleted or numbered).

3. Add the Docmosis element that will render the data into the list paragraph.

3.14. Using Headers and Footers

It is possible to use the headers and footers features of Microsoft Word or LibreOffice when
creating templates. Any static text, images anchored in the header/footer or word processor
features (such as page numbering) can be used in headers and footers and will appear in the
finished document.

For example, a document that had a branch name and address on the bottom of every page,
could use the header/footer feature as follows:

Version 4.9 | October 2025 Page 89 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Any fields in the headers and footers are populated outside of the page-by-page flow of the
document. This means there is no connection between the fields in the headers and footers
and the data being populated on any particular page. Specific parts of the data used in a
header and footer will not change from page to page in a way related to the current page
content.

One option to create a document that appears to align headers with page content is to
remove the header and footer and extend the margins for the body of the page so they
extended in to and cover the header/footer area of the page. This then allows the content to
be positioned where a traditional header/footer would be placed. Use a repeating section
around the whole page, and use fields that do include page specific information at the top or
bottom of the page, similar to below:

The example template on the left uses the word processor header/footer feature. Whereas
the template on the right “simulates” a header/footer, using extended body margins, and
placing content in the header/footer positions.

Another template feature that may help is to use Coordinator templates (see below).

3.15. Using Comments in Templates

Docmosis supports comments in templates. Comments are sections of the templates that are
ignored by document processing and never appear in the output document. If a comment
appears on a line by itself, the entire line is removed.

Version 4.9 | October 2025 Page 90 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Comments are useful for:

 Creating permanent notes in the template that are helpful to template authors.

 Disabling sections of templates temporarily to assist with development and maintenance.

Due to the two distinct requirements for comments above, there are times where users may
need to comment out a section of a template which itself contains other comments. For
example, temporarily disabling a section of the template which happens to contain comments
that are permanent. To support this, Docmosis provides two distinct comment delimiters as
shown in the following table. Different delimiters may be used to nest comments inside other
comments.

Start Delimiter End Delimiter

<<## ##>>

<</* */>>

Comments can span multiple lines and they are always included as plain text in the
document. Merge fields and Document fields cannot be used to create comments.

As an example, a template comment may look as follows:

<<## This is a comment block and will not be displayed. ##>>

3.16. Merging Templates Together

Docmosis provides three methods for combining templates:

1. Merging/Embedding – pulling the contents of another template into the current template.
A “master” template typically determines the main content and overall style (such as
definitions of headers and footers) and it references other templates from which to pull
content. The styling of “sub-templates” is preserved as much as is possible, aiming to
make sure the sub-template looks the same whether used directly, or referenced by
another template.

2. Coordinating – rendering multiple templates independently in a single call and possibly
combining into a single PDF output. A “coordinating” template refers to other templates
to be rendered in order but the coordination template is not part of the result.

3. Multiple template references in API calls – multiple templates can be specified in the
Docmosis API when executing document generation. This is discussed in the product-
specific developer / API guide, not in this guide.

Version 4.9 | October 2025 Page 91 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Merging and Coordinating templates primarily involves the use of <<ref:xxx>> and
<<refLookup:xxx>> fields to refer to other templates.

Coordinating and Merging templates can refer to other templates, including ones that merge
in others. A coordinator template however cannot be used by other templates and must
always be the “main” template rendered.

3.16.1. Combining Templates Using Merging/Embedding

Docmosis has the ability to combine multiple templates into one resulting document. This
gives template authors the ability to separate “common content” out of templates and into a
"shared" or common sub-template. The common information then only needs to be
maintained in one template and all referencing templates will automatically use the new
information.

This template merging is primarily for pulling in pieces of content which exist in other
templates into a single output. In this case a “master” template refers to other templates
from which to include content. The master typically determines the overall style, including
definitions of headers and footers for the final document. The styles used by sub-templates
are preserved to try to ensure the sub-template always looks the same, whether used directly
or used by different master templates.

Templates used in this way can include all typical content including styled text, headings,
tables, images etc. Docmosis will populate the sub-templates as per normal using the data
that applies at the point of insertion, as if it were content in the main template. Any number
of sub-templates can be included, and included sub-templates may include other sub-
templates.

The way to control this is to insert a reference in the master template to another sub-
template. The referenced sub-template will be populated with data and then inserted at the
referenced location into the master template. For example, given a master template
MainProcess.docx that references two sub-templates process1.docx and
process2.docx, Docmosis will insert process1.docx and process2.docx into
MainProcess.docx as it processes MainProcess.docx.

For example, a master template that looks like this:

Hello <<name>>,

Today is a lovely day.

<<ref:signoff.docx>>

Will create a document that like this:

Version 4.9 | October 2025 Page 92 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Hello Jamie,

Today is a lovely day.

Best Wishes,

Admin.

where the main content comes from the master template, “Jamie” comes from data and the
best wishes comes from the signoff.docx template.

Docmosis supports two ways of referencing templates; directly and indirectly. Each of these is
explained further a little later in this section.

3.16.2. Combining Templates Using Coordination

Template coordinating works as if rendering each template separately. A “coordinator”
template exists to specify the other templates to be rendered. The coordinator template itself
is not part of the resulting document, its sole purpose is to coordinate the rendering of other
templates. The results of a coordinated render are one or more files correlating to each of
the templates rendered in the order determined by the coordinator template.

Coordination results in one or more files as follows:

 PDF output – a zip file is created with the individual PDF files for each template.
Docmosis Cloud and Docmosis Tornado can also create a combined single PDF
automatically.

 Other output formats – a zip file is created with the individual files rendered for each
template.

To create a coordinator template, create a document which contains the marker field:

<<coordinator:>>

somewhere in the template. Subsequent template references will be processed in order. A
simple coordinator template may look like this:

<<coordinator:>>

<<ref:coverPage.docx>>

<<ref:mainOffer.docx>>

<<ref:annexA.docx>>

<<ref:annexB.docx>>

when the template is rendered, Docmosis will render the templates coverPage.docx, then
mainOffer.docx, annexA.docx and finally annexB.docx into documents and return the

Version 4.9 | October 2025 Page 93 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

combined result. As mentioned previously, the combined result will typically be a zip file,
except in specific cases where Docmosis will automatically combine the results into a single
PDF document.

Coordinator templates can use almost any Docmosis template features such as conditions,
repeating, and variable setting. The template variables created in the coordinator template
are available to the templates being referenced. Further template variables created in the
referenced template are visible to the coordinator and to subsequent referenced templates.
Coordinator templates can even use templates that merge (but not coordinate) other
templates.

So, the simple coordinator example above might optionally include annexB depending on
some other condition:

<<coordinator:>>

<<ref:coverPage.docx>>

<<ref:mainOffer.docx>>

<<ref:annexA.docx>>

<<cs_includeAllAnnexes>>

<<ref:annexB.docx>>

<<es_>>

Docmosis supports two ways of referencing templates; directly and indirectly. Each of these is
explained further a little later in this section.

3.16.3. Coordination-Specific Features

There are some features specific to direct the coordinator process. They are:

<<coordinator:padToEvenPage>> - if necessary, insert a blank page to make the output an
even number of pages at this point.

<<coordinator:padToOddPage>> - if necessary, insert a blank page to make the output an odd
number of pages at this point.

<<coordinator:newFile[:new name]>> - switch to a new file (with an optional new name) for
the subsequent templates. This implies a zip file will be created instead of a single PDF. This
allows coordination of a number of templates into a specific number of output PDFs.

Version 4.9 | October 2025 Page 94 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Each of the above features take effect in Docmosis Cloud and Docmosis Tornado when
automatically joining templates into a single output PDF. In Docmosis Java, the information is
made available in the API response that these features were used, but Docmosis Java does
not combine PDFs automatically.

3.16.4. Advantages and Disadvantages of Merging Features

Template merging and template coordination are two features for different purposes. Subtle
advantages and disadvantages are present:

Advantages of Merging Templates:

 Suited for pulling common pieces of content into a main template

 Can be nested arbitrarily as required

 The master generally determines the main style, page numbering, headers, footers.

 Merging results in a combined single file and works for any output format.

Disadvantages of Merging Templates:

 The style of the sub-templates (referenced templates) can be overridden by the master
template (this is also an advantage)

 Sub templates can’t have their own headers and footers

 Have a performance impact (noticeably slower)

Advantages of Coordinator Templates:

 Make it easy to bring a set of templates into a single render call

 Can create a combined PDF (Tornado and Cloud only)

 Each document is rendered as if it is was rendered itself (ie headers/footers, page
numbering, styles) but using the same data from a single call to Docmosis

 Efficient to render (low overhead and less latency)

 Can share template-variables and data between coordinated templates.

Disadvantages of Coordinator Templates:

 Cannot create a single, combined output document (other than PDF using Tornado or
Cloud).

Version 4.9 | October 2025 Page 95 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

3.16.5. Direct Referencing (ref:)

Direct referencing is simple - the name of the sub-template is literally placed in the master
template.

The way to create a direct reference is to use a field prefixed with “ref:”.

For example <<ref:process1.docx>> will cause the template process1.docx to be
inserted. The following example shows how this would look in a template:

The direct reference indicates to Docmosis template merging to insert the content of the sub-
template into the master at the point of the reference. It informs Docmosis template
coordination that this is the next template to be rendered into a document.

3.16.6. Indirect Referencing (refLookup:)

An indirect reference serves the same purpose as a direct reference, except it obtains the
name of the template to use via a lookup of the data at the time of the render.

To create an indirect reference, the field prefix “refLookup:” or “refLookupOp:” is used.

For example, creating a field <<refLookup:process>>, Docmosis will use the value of the
data item “process” as the name of the template to insert into the document. The following
example shows how this might look:

Version 4.9 | October 2025 Page 96 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

If used with the following data (eg: in JSON format):

“process”:”process1.docx”

this would cause the sub-template process1.docx to be inserted.

If the given lookup (“process” in the above example) resolves to a blank, refLookup will treat
this as an error whereas refLookupOp will consider this normal with nothing to do.

3.16.7. Templates in Different Locations

By default, Docmosis assumes the referenced sub-templates are stored in the same location
as the referring template. In the scenario above, process1.docx must exist in the same
location as the master-template.

Docmosis also allows the sub-templates to be referenced in any context using the familiar
path notation.

For example, consider a project, projectAlpha, which has its own templates that are stored in
the location “projects/projectAlpha”.

To include a common header in templates separate the header layout/content into a separate
sub-template called headerContent.docx. This new sub-template applies to other projects
and is not exclusive to projectAlpha.

Creating an area “common” can then store the sub-templates that are common to all projects.
This results in a structure like this:

Version 4.9 | October 2025 Page 97 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Templates like mainDocument.docx can reference the sub-template headerContent.docx
using the field:

<<ref:/common/headerContent.docx>>

Note the leading “/” above. Or use the field:

<<ref:../../common/headerContent.docx>>

Which is using the common “..” notation to “go up one level” from where the master-
template is located.

The examples just listed use the direct "ref:" field prefix; however the same result can be
achieved using the indirect "refLookup:" field prefix if the data provides the appropriate
value.

Here are some example template references and what they mean.

Field Description

<<ref:template1.docx>>
template1.docx is expected to be in the same location
as the calling template.

<<ref:/template1.docx>>
template1.docx is expected to be in "root" context. The
root context is the parent of all other contexts.

<<ref:/common/template1.docx>>
template1.docx is expected to be in the "common"
context one down from the root context

<<ref:../template1.docx>>
template1.docx is expected to be in the parent context
of the calling template.

3.16.8. When a Template Cannot be Found

Docmosis treats a missing template as an error. During the rendering of a document, if a
reference to a sub-template is encountered and the sub-template cannot be found then an
error will be raised. Depending on Docmosis configuration this will either write the error into
the resulting document, or generate no document at all and return an error (see section 2.5
Error Handling).

In some cases, it is possible for a template to reference a sub-template that doesn't exist
and for processing to occur with no errors. This can happen if the reference to the sub-
template was inside a conditional section that gets skipped. For example, if
includeSub is false in this case:

Version 4.9 | October 2025 Page 98 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

<<cs_includeSub>> <<ref:nonExistantSubTemplate.docx>> <<es_>>

3.16.9. Continuing Numbered Lists Across Templates

When inserting a sub-template containing part of a numbered list in to a master template that
also has a numbered list, Docmosis can instructed to join the numbered lists together when
the sub-template is inserted by using the <<list:continue>> directive.

This only applies to merging (not coordinating) since coordinated renders are largely
independent of each other.

For example, if the master template looked like this:

And the sub-template (commonClauses.docx) contained a numbered list, where the first
numbered item has the <<list:continue>> field, like this:

Docmosis will generate this output, where the numbered items from the sub-template will
continue the sequence from the master template:

Version 4.9 | October 2025 Page 99 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Without the <<list:continue>> field, Docmosis would treat the list in the sub-template as a
new list and numbering would start from 1) again.

The <<list:continue>> field can also be used to continue multi-level level lists (such as: 1,
1.1, 1.1.1, 1.1.2, 1.2, 2, 2.1, etc.).

3.17. Page Breaks and Other Breaks

Docmosis templates may contain several types of break including page breaks, column breaks
and section breaks. If the break is in the template it will appear in the rendered documents
unless it is conditioned out with a conditional section. If the break is inside a repeating
section it will be repeated each time the repeating section is displayed.

To allow templates to be more expressive, Docmosis provides several fields that can be used
to render a break, but without having to place the break literally into the template:

Field Description

<<pageBreak>> Insert a page break at this location in the document.

<<columnBreak>>
Insert a column break at this location in the document. This only
applies to templates that have a multi-column page layout.

<<pageBreakNotLast>>

Insert a page break at this location in the document unless at the
last item in the current repeating section. This is only valid within
a repeating section.

<<columnBreakNotLast>>

Insert a column break at this location in the document at the last
item in the current repeating section. This is only valid within a
repeating section and within a page layout that is multi-column.

Version 4.9 | October 2025 Page 100 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

For example, a template section repeating person details and desiring to put each person on
a separate page could look like this:

3.18. Creating Pre-filled PDF Forms

Docmosis supports the creation of PDF forms, optionally pre-filled with data. PDF forms can
be useful for allowing customers to fill out information.

Docmosis can inject text into PDF form text fields, text areas and checkbox labels. Docmosis
can also check or uncheck the checkboxes.

Only ODT (LibreOffice Writer) templates are supported for PDF form creation.

To Create a PDF form, start with a LibreOffice Writer document for the template. Make sure
the Form Controls are visible: View > Toolbars > Form Controls. On the Form Controls
toolbar, click the “Design Mode” button to be able to add form fields to the template:

Once in design mode, all the controls are enabled and can be added to the template.

Version 4.9 | October 2025 Page 101 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

3.18.1. Adding a Text Field

1. To add text field, click the text box field:

2. Click and drag the area in the template to create the field. The following example shows
creating a field to collect a name in a table:

3. When the above template is rendered to PDF, there is a name field in which the user can
enter text:

4. To prompt Docmosis to pre-fill the name, add the <<name>> field into the new text box in
the template:

Version 4.9 | October 2025 Page 102 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

The next time the template is rendered, if name data exists, it will be pre-populated into the
form:

The PDF is now a pre-filled form, but can still be edited and adjusted as required.

3.18.2. Adding a Checkbox

When working with checkboxes, the same process applies.

1. Select the Check Box button:

2. Click and drag an area on the template to create the space for the checkbox and its label:

3. Double click on the field to access its properties. In the example below, the name has
been set to “fld_hasAddress” and the label to <<hasAddressLabel>>:

Version 4.9 | October 2025 Page 103 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

The “fld_hasAddress” name will cause Docmosis to look up the data for the value of
“hasAddress” and use the value to tick or untick the box when the document is generated.
The “fld_” prefix is what tells Docmosis to look up the value dynamically.

The Label looks like a Docmosis field and will be dynamically populated when the document is
rendered. If static text for the label is required, simply type the text and omit the << and >>
delimiters.

The above example, when rendered with data:

hasAddress=true, and

hasAddressLabel=”The name has been provided”

creates a pre-filled PDF form with the checkbox ticked and the label set to the data-provided
text:

Version 4.9 | October 2025 Page 104 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

4. FORMATTING DATA

Formatted or unformatted data may be passed to Docmosis. Docmosis has the ability to
format data for presentation in finished documents, such as formatting numbers, currency or
dates and displaying symbols for true or false boolean values. This section discusses the
advantages and disadvantages of both options.

For example, if the finished document is to display the following:

Data could be formatted before passing to Docmosis: “$1,200.00”, or unformatted: “1200”,
and then the formatting can be controlled in the template.

The advantage of passing formatted data is that the template syntax can be very simple:

However, the means the data must be formatted before passing it to Docmosis.

Alternatively, raw data can be used, in which case the formatting can be applied in the
template:

The advantage with this approach is that future changes to the formatting of the output can
be made by adjusting the template, however the syntax in the template is more complex,
which may not suit the template authors. Formatting can be applied using the functions that
are part of the Docmosis expression processing (Functions 2.4.4.5 Date Functions).

Version 4.9 | October 2025 Page 105 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

4.1. Formatting Numbers

Given numeric data (even from a text source like XML), Docmosis can be instructed to format
it by providing a formatting “string”. The string describes how the number should appear.

Below are examples of using the numFormat function (2.4.4.4 Numeric Functions) with the
following data (eg: in JSON format):

"myVal":"12.345"

Example Result

<<{numFormat(myVal,‘0.0’)}>> 12.3

<<{numFormat(myVal,‘$0.00’)}>> $12.34

<<{numFormat(myVal,‘0.0E0’)}>> 1.2E1

<<{numFormat(myVal,‘###.##’)}>> 12.34

<<{numFormat(myVal,‘000.0000’)}>> 012.3450

4.1.1. The Number Formatting String

The second parameter to the numFormat function is the formatting “string” that should be
constructed using the characters shown in the table in Appendix 1 - Number Formatting Codes.

The placement and meaning of each character within the string will determine how the input
data will be formatted and displayed in the finished document.

Example 1

The formatting string: ‘#,##0.00’, will be interpreted as follows:

 The ‘.’ point character is used to indicate the position of the decimal point.

 The two ‘0’ characters to the right of the point indicate that a digit should always be
displayed in those positions. In the case where the number being formatted is an integer
or only has one decimal place, then the result will be padded with trailing zeroes to the
right.

 The single ‘0’ to the left of the point indicates that at a minimum of one digit should
always be displayed to the left of the point. In the case where the number being
formatted is less than one, then a leading zero will be used in the result. (e.g. An input of
“.12” will display as “0.12”)

Version 4.9 | October 2025 Page 106 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

 The output number will always use as many leading digits as is needed to correctly
encode the number.

 There are three characters between the ‘,’ comma and the ‘.’ point. They are two
‘#’ and one ‘0’. The ‘#’ indicates: if there is a digit to display at this position then
display it, otherwise display nothing. These three characters will cause the digits to the
left of the decimal point will be grouped in blocks of three, effectively creating comma
separated blocks for the thousands.

Example 2

The formatting string: ‘0000’, will be interpreted as follows:

 There is no ‘.’ point character so all numbers will be output as integers.

 There will always be at least four digits as the ‘0’ character is used four times. If the
input number only has 1, 2 or 3 digits – then the output will be padded with leading
zeroes.

 If the input contains more than four digits then it will expand so that the whole number is
displayed.

If Docmosis cannot decode or encode the data because there is a mismatch between
the data and the formatting string, Docmosis will deal with the error as discussed in
section 2.5 Error Handling.

4.1.2. Locale-Specific Formatting

Numbers may be displayed or interpreted differently depending upon the rules and
conventions of a specific geographic location or locale.

For example

 In the USA, ‘.’ is used for the decimal point and a comma ‘,’ for the thousand’s
separator.

 In Germany it is the other way around. The thousand’s separator is a ‘.’ And the
comma ‘,’ is used for the decimal.

The third, and optional, parameter to the numFormat function is a code representing a
locale. If locale is not specified then by default the locale of the current environment will
be used.

The table in Appendix 2 – Date and Number Formatting Locales lists all the values that may be
used to specify the locale using a string to represent either country, language or code.

Version 4.9 | October 2025 Page 107 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

By default, the locale is considered when:

 interpreting or decoding data.

 formatting the output.

Below are some examples:

Example Description Result

<<{numFormat(“1234,5”,‘#.###,#’,‘DE’)}>>
Data is in German format and
output is using German format.

1.234,5

<<{numFormat(“1234.5”,‘#,###.#’,‘US’)}>>
Data is in US format and output
is using US format.

1,234.5

The formatting “string” can also include locale-specific features such as the ‘¤’ character. If
the ‘¤’ character is used in the formatting string, Docmosis will replace this with the currency
sign for the locale being used.

For example:

Example Result

<<{numFormat(‘1234.5’, ‘¤#,###.00’, ‘GBR’)}>> £1,234.50

<<{numFormat(‘1234,5’, ‘ #.###,00¤’, ‘DE’)}>> 1.234,50€

<<{numFormat(‘1234.5’, ‘¤#,###.00’, ‘USA’)}>> $1,234.5

The fourth, optional, parameter to numFormat is a boolean to indicate if the incoming data
should be interpreted using the locale. This value defaults to ‘true’, so in all the above
examples the data was displayed using the locale specified AND was decoded using the
locale.

For example:

Example Result

<<{numFormat(’12.345’,‘#.###,0’,‘DE’,‘true’)}>> 12.345,0

The data is expected to be provided in German format;

The value of this number is: “twelve thousand, three hundred and forty-five”;

The output was kept to one decimal place, in German format;

<<{numFormat(’12.345’,‘#.###,0’,‘DE’,‘false’)}>> 12,3

Version 4.9 | October 2025 Page 108 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Example Result

The data is decoded using the platform format (in this case US);

The value of this number is hence “twelve point three four five”;

The output was kept to one decimal place, in German format;

The final parameter to numFormat is a boolean to indicate if the given format string should be
interpreted using “localized” characters of the given locale. This value defaults to ‘true’,
so by default the format is expected to be specified in localized characters.

For example, when using the FRENCH locale, the format character used to specify the
thousands separator is a non-breaking space rather that the common space. In a template,
this can be inserted using ctrl-shift-space. In data such as JSON, it can be encoded as \u00A0.

4.2. Formatting Dates

Given time and date data Docmosis can format it by providing a formatting “string”. The
string describes how the time and/or date should appear in the finished document.

Below are examples of using the dateFormat function (2.4.4.5 Date Functions), with the
following data (eg: in JSON format):

"myDate":"27-May-2020"

Example Field Result

<<{dateFormat(myDate,‘dd/MM/yyyy’)}>> 27/05/2020

<<{dateFormat(myDate,‘MMM dd, yyyy’)}>> May 27, 2020

<<{dateFormat(myDate,‘EEE, dd MMM yyyy’)}>> Wed, 27 May 2020

<<{dateFormat(myDate,‘yyyy’)}>> 2020

<<{dateFormat(myDate,‘EEEE, dd 'of' MMM’)}>> Wednesday 27 of May

<<{dateFormat(myDate,‘EEEE’,‘dd-MMM-yyyy’,‘US’)}>>

<<{dateFormat(myDate,‘EEEE’,‘dd-MMM-yyyy’,‘ITALY’)}>>

<<{dateFormat(myDate,‘EEEE’,‘dd-MMM-yyyy’,‘GERMANY’)}>>

Wednesday

mercoledì

Mittwoch

<<{dateFormat(myDate,‘ EEEE tt/MMM/uuuu’,‘dd-MMM-
yyyy’,‘GERMANY’, ‘US’, true, true)}>>

Mittwoch 20/Mai/2020

(‘t’ is the day specifier
and ‘u’ is the year)

Version 4.9 | October 2025 Page 109 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Below are examples of using the dateFormat function (2.4.4.5 Date Functions), with the
following data (eg: in JSON format):

"myDate":"27-Mai-2020"

Example Field Result

<<{dateFormat(myDate,‘EEEE’,‘dd-MMM-yyyy’,‘US’,‘de’)}>>

<<{dateFormat(myDate,‘EEEE’,‘dd-MMM-yyyy’,‘ITALY’,‘de’)}>>

<<{dateFormat(myDate,‘EEEE’,‘dd-MMM-yyyy’,‘GERMANY’,‘de’)}>>

Wednesday

mercoledì

Mittwoch

The final parameter specifies the German (‘de’) input format, so the date string 27-Mai-2020
can be successfully processed.

4.2.1. The Date Formatting String

The dateFormat function accepts four optional parameters. The first two optional
parameters specify the output format “string” and the input format “string”. The strings
should be constructed using the characters shown in the table in Appendix 3 - Date Formatting
Codes.

The placement and meaning of each character within the string will determine how the input
data will be formatted and displayed in the finished document.

 If no output formatting “string” is provided – Docmosis will use the default format: ‘dd
MM yyyy’, hence the result in the first row of the table below.

 If no input formatting “string” is provided – Docmosis will attempt to use a set of common
date formats to decode the data.

 It is possible to include characters in the formatting string that “survive” the formatting
process and are not interpreted or replaced by Docmosis, by surrounding the characters
in two apostrophes: '. These appear vertical and they are different to open and closing
single quotes ‘ and ’, that slope left and right. Many word processors will convert
apostrophes to single quotes – so often the easiest way to add an apostrophe is to
cut/paste it in to the string.

 To allow for formats that include a space, the underscore character (_) can be used and
this will be converted by Docmosis in to a space. To include an underscore, the backslash
character can be used to indicate that the underscore should be left as an underscore (\
_).

Version 4.9 | October 2025 Page 110 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Below are further examples of using the dateFormat function with the following data (eg: in
JSON format):

"myDate":"25-May-2020"

Example Description Result

<<{dateFormat(myDate)}>>

No output string so
‘dd MM yyyy’ is

used.
25 May 2020

<<{dateFormat(myDate,‘MMM_dd,_yyyy’)}>>
Underscores are

replaced with spaces. May 25, 2020

<<{dateFormat(myDate,‘EEEE, dd 'of' MMM’)}>>

The word 'of' is
between two
apostrophes.

Monday, 25 of
May

If Docmosis cannot decode or encode the data because there is a mismatch between
the data and the formatting string, Docmosis will deal with the error as discussed in
section 2.5 Error Handling.

The dateFormat function also accepts a further two optional parameters. The first can be
used to specify the locale of the output format. This will change the language that the date is
rendered into. For example, to write out the date as typical for the German locale (again
using data "myDate":"25-May-2020"):

Example Description Result

<<{dateFormat(myDate, null, null, ‘German’)}>>

The null values for the
output and input
format mean use

defaults for the format.

27 Mai 2020

<<{dateFormat(myDate, ‘EEEE’, null, ‘de’)}>>

The ‘EEEE’ format in the
output prints the long

day name.
Mittwoch

Version 4.9 | October 2025 Page 111 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

The table in Appendix 2 – Date and Number Formatting Locales details how the locales can be
specified.

If “myDate” was specified using a German string, then the 4th optional parameter can be
specified to process the input value:

"myDate":"27 Mai 2020"

Example Description Result

<<{dateFormat(myDate, null, null, ‘de’, ‘de’)}>>

The null values for
the output and

input format mean
use defaults for the

format.

27 Mai 2020

<<{dateFormat(myDate, null, null, ‘US’, ‘de’)}>>

Process myDate in
German and write

out for the US
locale.

27 May 2020

The dateFormat function’s final two parameters specify whether the format string is to be
interpreted using the Locale-specific characters of the locale specified. Normally, the year is
specified with the ‘y’ character. However if, for example, the locale FRENCH is being used,
then it may be the ‘a’ character is being used for the year in the format string. In this case, the
final two parameters can be used to specify whether the outputFormat and inputFormat
(respectively) should be interpreted using pattern characters specific to the locale. By default,
both parameters are false.

Version 4.9 | October 2025 Page 112 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

5. APPENDICES

Appendix 1 - Number Formatting Codes

The string used to describe the format of a number (section 4.1 Formatting Numbers) should
be constructed using the specific characters shown in the table below.

Character Location Localized? Meaning

0 Number Yes Digit

Number Yes Digit, zero shows as absent

. Number Yes Decimal separator or monetary decimal separator

- Number Yes Minus sign

, Number Yes Grouping separator

E Number Yes
Separates mantissa and exponent in scientific
notation. Need not be quoted in prefix or suffix.

;
Subpattern
boundary

Yes Separates positive and negative subpatterns

% Prefix or suffix Yes Multiply by 100 and show as percentage

‰ (\u2030) Prefix or suffix Yes Multiply by 1000 and show as per mille value

¤ (\u00A4) Prefix or suffix No

Currency sign, replaced by currency symbol. If
doubled, replaced by international currency
symbol. If present in a pattern, the monetary
decimal separator is used instead of the decimal
separator.

' Prefix or suffix No

Used to quote special characters in a prefix or
suffix, for example, "'#'#" formats 123 to "#123".
To create a single quote itself, use two in a row: "#
o''clock".

Version 4.9 | October 2025 Page 113 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Appendix 2 – Date and Number Formatting Locales

The following table lists all the values that may be used to specify the locale by country,
language or code. These codes apply using locales in number and date formatting functions
(see sections 4.1 Formatting Numbers and 4.2 Formatting Dates).

The locale may be specified as follows:

 Precisely using the Language Code and the Country Code combined. For example ‘en_US’
or ‘en,US’ and ‘de_CH’ or ‘de,CH’

 Using the country ‘US’, ‘USA’ or ‘United States’

 Using the language ‘EN’, ‘Eng’, or ‘English’

Since using just the language or country might be ambiguous, the following order is applied
when matching the locale:

1. First is Country– by code, iso code then name

2. Next is Language – by code, by iso code then name.

Country Language

Code ISO Code Name Code ISO Code Name

AL ALB Albania sq sqi Albanian

AE ARE United Arab Emirates ar ara Arabic

AR ARG Argentina es spa Spanish

AU AUS Australia en eng English

AT AUT Austria de deu German

BE BEL Belgium nl nld Dutch

BG BGR Bulgaria bg bul Bulgarian

BH BHR Bahrain ar ara Arabic

BY BLR Belarus be bel Byelorussian

BO BOL Bolivia es spa Spanish

BR BRA Brazil pt por Portuguese

CA CAN Canada fr fra French

CH CHE Switzerland it ita Italian

CL CHL Chile es spa Spanish

Version 4.9 | October 2025 Page 114 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Country Language

Code ISO Code Name Code ISO Code Name

CN CHN China zh zho Chinese

CO COL Colombia es spa Spanish

CR CRI Costa Rica es spa Spanish

CZ CZE Czech Republic cs ces Czech

DE DEU Germany de deu German

DK DNK Denmark da dan Danish

DO DOM Dominican Republic es spa Spanish

DZ DZA Algeria ar ara Arabic

EC ECU Ecuador es spa Spanish

EG EGY Egypt ar ara Arabic

ES ESP Spain ca cat Catalan

ES ESP Spain es spa Spanish

EE EST Estonia et est Estonian

FI FIN Finland fi fin Finnish

FR FRA France fr fra French

GB GBR United Kingdom en eng English

GR GRC Greece el ell Greek

GT GTM Guatemala es spa Spanish

HK HKG Hong Kong zh zho Chinese

HN HND Honduras es spa Spanish

HR HRV Croatia hr hrv Croatian

HU HUN Hungary hu hun Hungarian

IN IND India en eng English

IN IND India hi hin Hindi

IE IRL Ireland en eng English

IQ IRQ Iraq ar ara Arabic

IS ISL Iceland is isl Icelandic

IL ISR Israel iw heb Hebrew

Version 4.9 | October 2025 Page 115 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Country Language

Code ISO Code Name Code ISO Code Name

IT ITA Italy it ita Italian

JO JOR Jordan ar ara Arabic

JP JPN Japan ja jpn Japanese

KR KOR South Korea ko kor Korean

KW KWT Kuwait ar ara Arabic

LB LBN Lebanon ar ara Arabic

LY LBY Libya ar ara Arabic

LT LTU Lithuania lt lit Lithuanian

LU LUX Luxembourg de deu German

LU LUX Luxembourg fr fra French

LV LVA Latvia lv lav Latvian (Lettish)

MA MAR Morocco ar ara Arabic

MX MEX Mexico es spa Spanish

MK MKD Macedonia mk mkd Macedonian

NI NIC Nicaragua es spa Spanish

NL NLD Netherlands nl nld Dutch

NO NOR Norway no nor Norwegian

NZ NZL New Zealand en eng English

OM OMN Oman ar ara Arabic

PA PAN Panama es spa Spanish

PE PER Peru es spa Spanish

PL POL Poland pl pol Polish

PR PRI Puerto Rico es spa Spanish

PT PRT Portugal pt por Portuguese

PY PRY Paraguay es spa Spanish

QA QAT Qatar ar ara Arabic

RO ROM Romania ro ron Romanian

RU RUS Russia ru rus Russian

Version 4.9 | October 2025 Page 116 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Country Language

Code ISO Code Name Code ISO Code Name

SA SAU Saudi Arabia ar ara Arabic

SD SDN Sudan ar ara Arabic

SV SLV El Salvador es spa Spanish

SK SVK Slovakia sk slk Slovak

SI SVN Slovenia sl slv Slovenian

SE SWE Sweden sv swe Swedish

SY SYR Syria ar ara Arabic

TH THA Thailand th tha Thai

TN TUN Tunisia ar ara Arabic

TR TUR Turkey tr tur Turkish

TW TWN Taiwan zh zho Chinese

UA UKR Ukraine uk ukr Ukrainian

UY URY Uruguay es spa Spanish

US USA United States en eng English

VE VEN Venezuela es spa Spanish

YE YEM Yemen ar ara Arabic

YU YUG Yugoslavia sh srp Serbo-Croatian

YU YUG Yugoslavia sr srp Serbian

ZA ZAF South Africa en eng English

Version 4.9 | October 2025 Page 117 of 119

DOCMOSIS-JAVA TEMPLATE GUIDE

Appendix 3 - Date Formatting Codes

The input and output date formats (see section 4.2 Formatting Dates) can be created by using
combinations of the letters from the table below. Note, these are not “localized” pattern
characters – to use localized pattern characters, please contact Docmosis Support.

Letter Date or Time Component Presentation Examples

G Era designator Text AD

y Year Year 1996; 96

M Month in year Month July; Jul; 07

w Week in year Number 27

W Week in month Number 2

D Day in year Number 189

d Day in month Number 10

F Day of week in month Number 2

E Day in week Text Tuesday; Tue

a Am/pm marker Text PM

H Hour in day (0-23) Number 0

k Hour in day (1-24) Number 24

K Hour in am/pm (0-11) Number 0

h Hour in am/pm (1-12) Number 12

m Minute in hour Number 30

s Second in minute Number 55

S Millisecond Number 978

z Time zone General time zone Pacific Standard Time; PST; GMT-08:00

Z Time zone RFC 822 time zone -0800

Version 4.9 | October 2025 Page 118 of 119

Docmosis Pty Ltd

Address
Suite 8 / 5 Hasler Road,
Osborne Park,
WA 6017 Australia

Website
https://www.docmosis.com

Resources
https://resources.docmosis.com

https://resources.docmosis.com/
https://www.docmosis.com/

	1. Introduction
	1.1. Using this Guide
	1.1.1. Terminology and Conventions Used in this Document

	1.2. Troubleshooting

	2. Templates Overview
	2.1. Separating Content from Presentation
	2.2. What Are Templates?
	2.3. How Does Document Generation Work?
	2.4. Template Features
	2.4.1. General Features
	2.4.2. Advanced Features
	2.4.3. Docmosis Elements
	2.4.3.1. Fields
	2.4.3.2. Repeating
	2.4.3.3. Repeating With Stepping
	2.4.3.4. Repeating With Filters
	2.4.3.5. Repeating With Sort
	2.4.3.6. Repeating With Grouping
	2.4.3.7. Conditional
	2.4.3.8. Nesting
	2.4.3.9. Range Specifiers
	2.4.3.10. Built-In Variables
	2.4.3.11. Built-In Variables When Repeating
	2.4.3.12. Built-In Variables When Stepping
	2.4.3.13. Built-In Variables When Grouping

	2.4.4. Expressions and Functions
	2.4.4.1. Expression Operators
	2.4.4.2. Logic and Transform Functions
	2.4.4.3. Text Functions
	2.4.4.4. Numeric Functions
	2.4.4.5. Date Functions
	2.4.4.6. Locale Functions

	2.5. Error Handling
	2.6. Useful Diagnostics
	2.6.1. Diagnostic tools

	3. Creating Docmosis Templates
	3.1. Incorporating Docmosis Elements
	3.2. Using Plain Text Fields
	3.3. Using the Built-in Word Processor Fields
	3.3.1. Creating a Field Using Microsoft Word Merge Fields
	3.3.2. Inserting a Field Using LibreOffice Writer Input Fields

	3.4. Using Text Substitution
	3.4.1. Simple Field Name Syntax
	3.4.2. Optional Paragraph Fields
	3.4.3. HTML

	3.5. Using Docmosis Variables
	3.5.1. Check if a variable has been set

	3.6. Using Images
	3.6.1. Image Hyperlinks

	3.7. Creating Barcodes
	3.7.1. Supported Barcode Formats
	3.7.2. Typical Barcode Example
	3.7.3. Using a “barcode” Field to Specify Barcode Settings
	3.7.4. Barcode Tips
	3.7.5. Barcode Settings in Detail

	3.8. Creating QR Codes
	3.8.1. Typical QR Code Example
	3.8.2. Using a “qrcode” Field to Specify Default Settings
	3.8.3. QR Code Settings in Detail

	3.9. Creating Active Hyperlinks
	3.10. Using Conditional Sections
	3.11. Repeating Sections
	3.11.1. Stepping Across in Repeating Sections
	3.11.2. Stepping Down in Repeating Sections
	3.11.3. Sorting in Repeating Sections
	3.11.4. Filtering in Repeating Sections
	3.11.5. Grouping in Repeating Sections
	3.11.6. Combining Repeating Section Directives

	3.12. Using Tables
	3.12.1. Conditional Rows
	3.12.2. Repeating Rows
	3.12.3. Stepping in Repeating Rows
	3.12.4. Sorting in Repeating Rows
	3.12.5. Filtering in Repeating Rows
	3.12.6. Grouping in Repeating Rows
	3.12.7. Combining Repeating Row Directives
	3.12.8. Alternating Row Colours and Border Controls
	3.12.9. Disabling Row Alternating
	3.12.10. Conditional Columns
	3.12.11. Advanced Table Structures

	3.13. Using Lists
	3.14. Using Headers and Footers
	3.15. Using Comments in Templates
	3.16. Merging Templates Together
	3.16.1. Combining Templates Using Merging/Embedding
	3.16.2. Combining Templates Using Coordination
	3.16.3. Coordination-Specific Features
	3.16.4. Advantages and Disadvantages of Merging Features
	3.16.5. Direct Referencing (ref:)
	3.16.6. Indirect Referencing (refLookup:)
	3.16.7. Templates in Different Locations
	3.16.8. When a Template Cannot be Found
	3.16.9. Continuing Numbered Lists Across Templates

	3.17. Page Breaks and Other Breaks
	3.18. Creating Pre-filled PDF Forms
	3.18.1. Adding a Text Field
	3.18.2. Adding a Checkbox

	4. Formatting Data
	4.1. Formatting Numbers
	4.1.1. The Number Formatting String
	4.1.2. Locale-Specific Formatting

	4.2. Formatting Dates
	4.2.1. The Date Formatting String

	5. Appendices
	Appendix 1 - Number Formatting Codes
	Appendix 2 – Date and Number Formatting Locales
	Appendix 3 - Date Formatting Codes

