

d:, docmosis

Copyrights
© 2025 Docmosis Pty Ltd

Trademarks
Docmosis is a registered trademark of Docmosis Pty Ltd.

https://www.docmosis.com

Microsoft Word and MS Windows are registered trademarks of the Microsoft Corporation.
http://office.microsoft.com/en-us/default.aspx

http://www.microsoft.com/windows/

Adobe® PDF is a trademark of the Adobe Corporation.
http://www.adobe.com/products/acrobat/adobepdf.html

LibreOffice is a trademark of LibreOffice contributors and/or their affiliates.

http://www.libreoffice.org

http://www.libreoffice.org/
http://www.adobe.com/products/acrobat/adobepdf.html
http://www.microsoft.com/windows/
http://office.microsoft.com/en-us/default.aspx
https://www.docmosis.com/

DOCMOSIS-JAVA DEVELOPER REFERENCE

TABLE OF CONTENTS

1. INTRODUCTION.....cciiiiirrttniiiitrinnnesinitieeeeesssssssesssssssssssssssssssssssssssassssssssssssssssssssssanes 7
1.1, USING this GUILE......cciiiieeiiiieiiietiecnceeeneetttsssesssssssssnsassssssssssssssssssssasssssssssssssssssssnns 7
1.1.1. Terminology and Conventions Used in this Document.........cccccoevvervieeneeneennieeneenns 7
1.1.2. Related REAGING.....cccccieieiiiiriieieieseseet ettt s be e saa e s be e beesaaessbeenbaesaneens 8
2. DOCMOSIS OVERVIEW......ciittrrrirenneiiirieneisiniennesssnmenesssrsssesssssssssssssssssssssssssssssssssssssns 9
8 DR V23 =T 4 g0 T=T ol o [o R 10
2.2. Templates and the Template Store.........ccceiiiiiiiveiiiiiiiietiiiiietiecsneesesssneesssssanens 1
2.2, Template CONTEXT. ..ottt s sbe e 12
2.2.2. Data PrOVIAEIS...cco ittt sttt st sttt sbe st s b et e saeenbesanens 12
2.2.3. CONVEITRIS ottt s sba e s e s ba e e saba e e 13
2.2.4. CONVErSION INSTIUCTIONS....ciiiiiiiiiiieectie ettt s 15
3. INSTALLING AND SETTING UP DOCMOSIS.......cccerreeeeuiiirrnnesinrennssssranescnssnnesenees 16
3.1. Planning your ENVIrONMENL..........ccouiiuiiiienreininiiiininnininneinisneesssesssssesssssmesssssssssssee 16
311, SyStem REQUIFEMIENTS.....eiiiiiiiieiieeteee e 16
3U1.20 TASKS ettt et e b e et she e b saeen 17
3.2. Installing LIbreOffiCe.......ciiiiiieiiiiiieiiieettcnceettecnet s sase s s sasessssssannes 18
3.3. Installing Docmosis (COre ENGINe)......ccccceeveerirerisreiriseeiiiiissnecississneeisssssseessssssnseessssses 19
3.3.1. Docmosis Configuration Properties.......cccceerererieineeiienieeiiesieesiesieesie e s e 20
3.3.2. Configuring the Converter POOL.........cocuoivirireriiieecse et 20
3.4. Installing Remote CONVEIrtErs.........ieiiiiiieiiiiinetiiineeettetieessssssssseeeessssssssssssssssssssees 22
3.4.1. Preparing ConVerters fOr USE. ...ttt sttt 22
3.4.2. Enabling SSL/TLS Communications to Remote Converters........ccceeeeneerseenneenne 23
3.5. Adding SUPpPOrt for Barcodes............coiiiiiireiininseniennnnneeniiiisisissssssssssssssssssssssssssssssssses 24
3.6. Adding Support for QR COAEs........ccccirireiiiiiieeiiiiiiineiieciisneeiessssnesssssssssesssssssssessssssnnes 24

Version 4.9 | October 2025 Page 3 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

3.7. Adding Support for Processing of image meta data (EXIF).......cccceeverrivruuerriciiinernnnnee 24
4. GENERATING DOCUMENTS.....ccuuiiiiriiiiiniirieiireeiireeiieeesreeessrasssssasssssssssssssssssnses 26
4.1. INitialiZiNg DOCMOSIS......cciiiiiiiiiiinniiiisneiisisneissssssiesssnes 26
4.2. Registering Templates.........cooiiiiiiiiiiiiiitiicicneeeerrr s asanees 27
4.2.1. Help with Template Registration.......cccecvcieienineiiieniesiese e 27
4.2.2. Using Convenience Methods.......cooiiiiiiiniiecrieeeeee e 27
4.2.3. Registering Templates AUtOMAtICallY.....cccoveririiiiiniininincece e 28
4.2.4. Using the DropStoreHelper Class. ... eirenieieeeresieeie et 28
4.2.5. Using the StoreHelper Class......cuiiiiiniiniiiienieseeieesie e 29
4.3. Referencing TeMPIAtES........ciiiiiiiiiiiiiiiiieticiettissaseeette s sasases e s s e ssssssssssnns 30
4.4. Defining the Conversion INStrUCLIONS..........ccciiiiiiinirnnneetiiiiiiiniiinnseeettiiisssssssssssssssssses 31
4.5. Defining the Output Destination...........ccoiiiiiiiiiiiiiiieiiiiiiccccceeeeete e 31
4.6. Preparing the Data.........iiiiiiiiiiiiinnneeetiiiiiiisssssssssssssessses 31
4.6.1. Adding Simple TeXtual Data........ccccevererieiereneneeesee et 32
4.6.2. Adding Textual Data with HTML-like Mark-Up.....ccccoceeviiriiinniinienieceeniesieeieeens 32
4.6.3. Adding Structured Data USINg StriNGS......cccceeerieriiienienienieesee et 34
4.6.4. AdAING XML DaAta....ceeirerieieiinienieieeeiesiestete ettt sttt st sbe ettt sst e b et sbeebesanenees 35
4.6.5. AddING JSON Data...cceeiierieriirieeieeiieeieerite sttt sttt et sat et sbee st s b e sbeesanesbeennees 35
4.6.6. AddIiNG IMAGE Data.....ccereriririiieniisiieieiesese st ete et e siaessbeesaeestesbeesbaesssesseesanenns 35
4.6.7. AddIiNG JAVa ODJECES..cueiieiiierieeteie ettt ettt be e s e 36
4.6.8. Adding Database QUEIIES......cccuvieiiiiriieiesieeie ettt st et sb s saeesaaesbeees 37
4.7. Generating the DOCUMENL..........cciiiiiiiiiiiiiiiiicicneete s sseseees s s s s assasesees 39
4.8. CloSing DOWN DOCMOSIS......ccorvuirirretieiirruneiiiiisinetisssssssetsssssssseessssssssssssssssssssssssssssssssssssnas 40
4.9, Error HaNdliNG........uiiiiiieiiiieiiiinneneetttinsssssssnneettte s ssssssssssssssssssssssssssssssssssasssses 40
4.9.2. Recommended CoNfiguratioNS......c.ccocuevierirerieeiienieneneesee et sreesieesresreesane e 41
4.10. OtRer FEAtUIES........cciiiueiiiieeticinttecsnnneettt s s sssssssssssese s s e s s s s s ssssssssssssssssssssssssssasenees 42
4.10.1. Setting Password ProteCtioN........ccccecerererieriienieninie ettt sre e e snesseesaee e 42
4.10.2. USING WatermarkiNg.......ccceerieieieiereeeesie ettt sttt st s 42

Version 4.9 | October 2025 Page 4 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

4.10.3. Setting PDF Title and INitial VIEW......c.ccooriririiieieeeeeeeeeee e 42
4.10.4. Enabling PDF Archive MOde........ccoiriiiiiieniiniieniceiectee sttt 43
4.10.5. Setting PDF Accessibility / Low ViSion MOde........ccceceeiierieeiienieneeieesee e 43
5. MATCHING DATA TO TEMPLATES.......orrrirreiirreiiriecirenctreeereeesraessssesssssasssssnes 45
5.1. The Sources of Data...........coiiiiveiiiiiiiiieiniinetiicineetecseeetessese s sesssase s sssssssesssssssnsesses 45
5.1, SEINE DAta..uuiiiiiiiiiiieeee et s 45
5.1.2. Java ODjJeCtS @S Data.....ccevierieririeieieniesieetesiesie st ettt s e sbeesbeesanesabeebeessaesarees 46
5.1.3. SQL QUEIY Dala..cueiiiiiiiiiiiieieeteeie ettt s e e sbeeeas 46
5.2. POPUIAtING DAta......ccocceiiiiiuniiiiinnnneeitiiiiiesissssssnsssassssssssssssssssns 47
5.2.1. Using Simple LOOKUP Fields.......coeoiiieiiieeeeeeeee e 47
5.2.2. Using Nested LOOKUP FIldS......cccviririiiininiinieieienie et 48
5.2.3. INAEXEA LOOKUP . .eiutititerteeitetete sttt sttt ettt sttt s b e e sbe e saee st e e beesaeesaneas 49
5.2.4. USING IMAZE DAl...ccutiiriiiiriieienienieerieeiteesite sttt sre e ssite e st e s sbeesbreesbeessaseesneeesaseeenns 50
5.2.5. Using Repeating Sections and Repeating Table ROWS..........ccoceeveenieniienieeneennnen. 51
5.2.6. Using Fields in Bullets or Numbered LiStS........ccccoiviririieniniienniieniesiesieesee e 53
5.2.7. Using Conditional Sections, Conditional Tables Rows & Columns.........cccccceuuuee. 54
5.2.8. Java LOOKUP EXaMIPIES....cuiiiiriiieieiirieietetestetesitee ettt 56
6. ADVANCED FEATURES......cititiirritttteisiiiisiniinnnntenesstiessessssssssssssssasesssssssssssssssssssens 57
6.1. UsSiNg Field RENAEIErS........ccooueiiiiieiiiinetinieeicssssnnnneetettssssssssssssssssssssssssssssssssssnsnses 57
6.1.1. Using BUilt-In Field RENAEIErS......cccviierinieriecieeeee sttt s 57
6.1.2. Building Your Own Field RENAErers........coeiirieiieeieeieeteeeeeese e 60
6.2, JAVA REFIGCHION. ...ttt rtee e e ce e e e e e e e s eeeeseeseeeeeseseseseseeseesssessssssssannnnnns 63
6.2.1. Parameterized Methods. ..ot 63
6.2.2. DEDUGEING.c..ceeuieiertiieteeeseree ettt st sttt sttt bt sttt nre e 63
7. DOCMOSIS PROPERTIES........ccccotiiiiiminnnrnnnmnnnnenecsssssrensescnsssnsssssssssssssssassssssssssssssssns 65
7.1. Property Locations and OVerriding........cccoovveeeriirueeiiiiisseeincisnnneinccsnneeeescsssneessscssnnens 65
7.2, KEY PrOPEeIti@S....ccccovvueeriiiiiirsssnneiiicissssssnssass 66

Version 4.9 | October 2025 Page 5 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

7.3. Other Useful Properties.........iiiiiiiiiiiiiieetiinieetiesnnnesiessssnnesssssssssesssssssssssssssnnes 71
7.4. Properties for ProducCtion............ciiiiiiiiiiiiiiiiininnnneeeniiiinnsnissssssssesssssssssssssssssssssses 72
8. TROUBLESHOOTING.....cccetrrrrreeueeeiiireneiiiiteneiintisniestrssesssssssessssssssssssssssssssssnsesses 73
8.1. Getting Additional SUPPOIrt..........oo ittt sasaseeees 73
8.2, KNOWN ISSUES.....uuuueeiiiiiiiinnntetiicisinnntteeenscsinniiaiiissssssssssssssssssssssssssssssssssssssesssessesssesees 73

Version 4.9 | October 2025 Page 6 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

1. INTRODUCTION

Welcome to the Docmosis-Java Developer Reference. This manual is intended for software
developers who wish to provide document generation as part of their own applications. It
provides information that will enable the integration of Docmosis-Java in to your Java
application.

1.1. Using this Guide

1.1.1. Terminology and Conventions Used in this Document

The following terminology is used in this document.

A normal Microsoft Word or LibreOffice Writer document

Template - . I
containing special Docmosis fields.

Docmosis specific mark-up within the template, that controls the
insertion and removal of data and content.

Fields / Placeholders

Rend The process of merging data with a template to generate a
ender
document.

The location where registered templates reside. Only templates
Template store . :
that have been registered can be rendered into documents.
An object or set of objects, supplied at the time of rendering a
Data provider document, that contain the combined sources of information for

populating into a template.

An ‘instruction’ about what to do when rendering a document
Conversion instruction including information about output formats, compression flags
and object naming.

A separable component of Docmosis that renders the document
into its final format. Converters may be distributed across

Converter multiple computers and may be organized into groups. This
component is processor intensive and is the component that
relies on LibreOffice.

The pool of converters available to Docmosis. The pool is fault

tolerant and distributable; and provides an arbitrary grouping
Converter pool))

mechanism so that different groups of converters may be used

for different tasks.

Version 4.9 | October 2025 Page 7 of 74

d,

DOCMOSIS-JAVA DEVELOPER REFERENCE

This document uses the following typographical conventions to highlight significant parts of
the text to distinguish it from normal text.

<<fieldname>> A field in the document template that will be replaced with data.

A code instruction: either an individual line, or part of a complete
module.

docmosis. ###

An indicator to signify that the preceding sequence of code
instructions will execute incrementally until there is no more data
in the data provider.

A file name, a file extension or a web site address.
template.docx

1.1.2. Related Reading

Refer to the Docmosis-java Template Guide for information about creating the templates for
use with your data.

Version 4.9 | October 2025 Page 8 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

2.

DOCMOSIS OVERVIEW

This chapter provides an overview of the functionality of Docmosis and the basic workflows
involved in generating documents.

In simplest terms, the main purpose of Docmosis is to merge data from an application with a
template to generate documents.

With Docmosis, the layout and design of a template can be a separate process from the
development of the application. Anyone with knowledge of either Microsoft Word or
LibreOffice Writer can create and maintain the templates, thereby allowing non-developers to
contribute to the decisions and execution of how the finished documents will look.

From a developer’s perspective, the basic process to generate a document is:

1.

2
3
4,
5

Specify the template to use.

Specify the data.

Specify any special instructions.

Specify the destination stream for the output.

Invoke the render method.

‘ @
Template | [

<< >>
<< >>

—

| |
I Illl
e

Data Sources

Templates

Document | [=
XXX
XXX piobe
—

Documents

Version 4.9 | October 2025

Page 9 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

2.1. System Description

Docmosis-Java is a Java library that integrates with your own Java applications, Web
applications or J2EE applications. It comprises a core engine and one or more converters,
depending on your system’s requirements.

The docmosisX.X.X.jar contains the code for the core and converters. The JAR file can be
added as a library to your Java application to access the Docmosis core. It also contains the
code to run a Docmosis “converter”. The one JAR file does both jobs.

Your Java Application

Docmosis
Core

The Docmosis core is embedded into your Java application, and is the only part of Docmosis
with which your application will interact directly. The converters can be installed on any host

machine on the network, and are independent processes with which the Docmosis core
interacts. Docmosis offloads the bulk of the effort in the rendering process to the converters.

Docmosis is generally used by a “server-side” system. It has been built with scalability in mind
to allow the servicing of many clients. Docmosis automatically manages queuing requests so
that under heavy concurrent loads, the documents requested will be generated as soon as
the required resources are available. The rate of document generation is determined by
many factors, but in typical environments Docmosis can be expected to generate hundreds of
documents per minute if required.

The major elements of Docmosis with which developers will interact are templates, data
providers and the document processor. The document processor brings together all of the
components to perform the document generation.

Docmosis uses an installation of LibreOffice during the document generation process,
specifically during the conversion stage. This means that converters must have visibility to a
LibreOffice installation.

Version 4.9 | October 2025 Page 10 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

2.2. Templates and the Template Store

Templates define the layout and formatting of the generated documents. Templates contain
the special Docmosis fields into which Docmosis will insert the data supplied by the data
providers.

The template contains
formatting and layout

Docmosis Example Template ——_|

features...

<<rs_IDSets>>
<<tableDesc>>

ID Value

<<Lid>> <<value>>

<<id>> <<value>>

Table 1 << tableDesc >>

<<es TDSets> ... and coded elements

for Docmosis data.

Docmosis Templates may be developed using Microsoft Word or LibreOffice Writer.
Templates are not templates in the usual sense for these applications, since Docmosis can
use any document as a template. If the document contains fields, then Docmosis works with
those fields during document generation. For detailed information about developing
templates, please refer to the Docmosis-Java Template Guide.

To make the performance of document generation as high as possible, Docmosis performs a
one-off analysis and optimization of each of the original templates. This process is known as
registration. The registration process creates an optimized copy of the template in a location
called the “template store”, ready to be rendered into documents. The location of the
template store is defined in the configuration properties (see section 3.3.1 Docmosis
Configuration Properties).

The template store should be thought of as a cache of the optimized templates that are now
ready for use. If your template is not registered, then it will not be in the template store, and
it can’t be used to generate a document. Updated templates will not take effect until they are
re-registered. Docmosis provides several mechanisms to make template registration easy
(see section 4.2 Registering Templates).

The Docmosis core is the only part of the document generation system that interacts with the
template store. As a result, the template store needs to be accessible only by the Docmosis

Version 4.9 | October 2025 Page 11 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

core. Converters running on remote servers do not need to have access to the template
store.

f Docmosis provides an in-memory cache over a file-based template store. This provides
@ a performance-oriented source of templates.

It is important to think of the template store as a cache. It can be deleted as required,
but until templates are re-registered, they will not be able to be rendered. If your
system is not performance demanding then you generally won't even need to concern
yourself with the store. Simply use the methods in the DocumentProcessor class that
auto-registers templates on your behalf.

2.2.1. Template Context

Templates are stored in the template cache using a name and a context. A template’'s name is
any string you wish to use to label the template and is typically based on the file name of your
original template. The template context is simply a “path-type” construct allowing templates
to be organized into areas/directories/folders. Typically, the context will be based on the
location of the original template in a file system.

When the template set is small or contexts are not required, templates may be identified by
name only, and will be stored in the root of the template store.

2.2.2. Data Providers

During document generation, the containing application passes a DataProvider to
Docmosis, which provides the data for the document. The captured data can include any
combination of strings, boolean values, images, lists, arrays of Java objects, Java object
hierarchies, database query results and name/value key pairs.

Typically, developers will not need to concern themselves with the different implementations
of data provider that Docmosis uses. The DataProviderBuilder class provides a simple
way for collecting your data together.

During a document generation, many calls will be made to the DataProvider to fetch data.
As a result, document generation performance is directly related to the complexity and
performance of the operations using the methods in this interface. Should you wish to build
your own custom implementations of the Data Provider interface, you should keep this in
mind.

Version 4.9 | October 2025 Page 12 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

2.2.3. Converters

A converter is the component of Docmosis that performs the rendering of the documents into
the desired formats according to the conversion instructions. In a simple setup, the
converters might be installed on the same machine as that with the application using
Docmosis.

The following diagram illustrates a simple configuration that uses two converters on the same
machine as the application.

Main Server

Your Java Application
Docmosis
Core

@ The number of converters you can run is determined by the edition of Docmosis you are
running. The first number in the edition tells you the maximum number of converters
you can run. A D-NOO can run ‘N’ converters. For example: a D-400 can run 4
converters.

The Trial Key allows for a maximum of 1 converter. Contact Docmosis support if you
would like to trial a larger set of converters.

Converters consume a large proportion of Docmosis’ processing requirements and to help
improve the performance of the conversion process, you can install converters on distributed
servers on a network. Converters can run on any computer to which the main application has
a network connection during the document generation process.

The following diagram shows a simple but distributed configuration where the processing
load has been moved away from the main server.

Version 4.9 | October 2025 Page 13 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

Main Server Distributed

Your Java Applicaiton

Server

Docmosis
Core

Docmosis also supports the sharing of converters. This enables you to run several
applications, each with their own Docmosis core, and use the same converters. This
configuration is ideal for development and testing environments where a small number of
converters may be set up and used by many developers. The following diagram illustrates
this configuration.

Server 1 Server 2

Your Java Application Your Java Application

Docmosis Docmosis
Core Core

Distributed
Server

Shared
Converter

For production or performance-oriented testing, sharing converters is discouraged as it may
result in inconsistent performance (two renders may queue up on a single converter rather
than auto-balancing). Docmosis typically assumes it has sole use of the converters in its pool
so will load balance optimally if this is correct.

In the Docmosis-Java Unlimited edition, converters can also be configured into groups that
have specific conversion tasks or performance requirements. If necessary, jobs will wait until
a converter from the designated group is available to complete the task. This allows, for
example, batch systems to be configured separately from online/ transactional systems.

Version 4.9 | October 2025 Page 14 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

When a document render is executed, the instruction can specify which group to use and
Docmosis will take care of locating a converter from the specified group. The following
diagram illustrates such a configuration.

Main Server Distributed
Server
Core
Distributed
b “ “

Converter Group Converter Group

2.2.4. Conversion Instructions

Conversion instructions provide specific information to a converter about the document
generation process. These instructions include such information as:

¢ the desired output formats
e data compression
* the output file names (this is used to name the files within a zip archive)

* the converter group to use (this is used for systems configured with multiple groups of
converters).

When Docmosis generates documents in several formats, the output files are stored in a
compressed package using the ‘zip’ format. The resulting zip file is streamed to the specified
output destination. You can also specify that Docmosis should store single output files in a
compressed package.

The DocumentProcessor class provides simplified methods that do not take conversion
instructions. These methods make rendering easier by making assumptions about the output
format etc. based on other given parameters.

Version 4.9 | October 2025 Page 15 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

3. INSTALLING AND SETTING UP DOCMOSIS

As stated earlier, Docmosis is primarily intended for use in a server-side environment, but it is
not limited to this. You can incorporate Docmosis into any system that you choose to develop,
including end-user or client-side applications. However, Docmosis is best suited to a server-
side environment, where you can take advantage of its performance characteristics.

Before you incorporate Docmosis into your system, you should identify the type of
configuration your system will require. When you have completed your planning, you can
perform the tasks necessary to deploy and use Docmosis. The following activities are
necessary to prepare Docmosis for use:

¢ installing and configuring Docmosis
* integrating Docmosis into your application
* preparing and registering the templates

e setting up the additional components.

3.1. Planning your Environment

The first consideration is the intended distribution of the Docmosis components: all on one
host machine, or distributed among several machines. The Docmosis converters can be
deployed onto any number of hosts that satisfy the minimum requirements discussed in the
following section. Distributing the installed components improves the overall efficiency of the
system by sharing the load among the host machines.

You can easily install and decommission converters as required, and simply change the
configuration to match the changes, so starting simple is often the best option.
3.1.1. System Requirements

This section identifies the system requirements for any machine that runs an application in
which Docmosis is embedded and any machine that runs a Docmosis converter. Make sure
that the following items are installed before trying to use Docmosis.

Docmosis Core
The minimum requirements for the Docmosis core are:

e Java Version 6 or later.

Version 4.9 | October 2025 Page 16 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

® The docmosis.jar libraryincluded in your application

* The docmosis.properties file, unless using the Configuration class to
programmatically configure Docmosis

* An appropriate license key for your environment

* AconverterPoolConfig.xml file, unless using the Configuration class to
programmatically configure Docmosis

e Optionally the barcode4j library and zxing library on the classpath if you would like
Docmosis to generate barcodes/qr-codes

e Optionally the metadata-extractor library and dependencies on the classpath if you
would like Docmosis to process image meta data (EXIF), such as rotation.

Docmosis Converters
The minimum requirements for distributed converters are:

e Version 1.6 or later of Java. Version 8 or later if using LibreOffice 7 or later. You must
make sure that if you are using 32 bit Java it is using a 32 bit LibreOffice. Likewise for 64
bit.

e LibreOffice 6 or later (see section below Installing LibreOffice)
* the docmosis.jar library

e the docmosis.properties file if using standalone converters (programmatic
configuration does not apply to standalone converters)

e an active network connection with the application using the Docmosis core.

Z | ’] The above configuration is required on every machine on which a converter is installed.

3.1.2. Tasks

The following list describes additional recommended tasks that should be considered when
planning your installation:

e |dentify the computer where the main engine is required. This will often be where an
existing application is running that will make use of Docmosis.

Version 4.9 | October 2025 Page 17 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

e Ifit's appropriate, identify the computers that will be used to host the distributed
converters.

e Confirm the network installation and connectivity of all machines that will be involved in
document generation.

e Confirm the installation and operation of the software identified in the preceding system
requirements section.

e Configure the Java classpath of your application to include the path to the

docmosis.jar, docmosis.properties and converterPoolConfig.xml files.

e Create boot-time scripts or start-up services to run your converters whenever the host is
restarted. This may be managed in alternate ways, depending on your system
configuration.

3.2. Installing LibreOffice

LibreOffice Writer is the word processing application in the LibreOffice suite. It can be freely
downloaded from:

http://www.libreoffice.or

@ This section is included because LibreQOffice Writer forms an integral part of the
document generation process. This section does not include general information about
installing and using Writer as a desktop application. Refer to the online help resources
provided by LibreOffice for further details.

To use Docmosis you must install LibreOffice on the machines nominated to host the
Docmosis converters. Only one installation of LibreOffice is required for any number of
converters on the same machine.

{ All the procedures in this chapter assume that you understand the techniques required
@ for the particular word processor and that you have a document open in the word
processor on which you can perform the procedure.

In addition, the procedures use menu-based instructions for consistency.

Docmosis requires no specific configuration settings for LibreOffice and you don't need to
register your installation. However, you should note the following points in this section to
ensure that you get the best performance from Docmosis.

Version 4.9 | October 2025 Page 18 of 74

http://www.libreoffice.org/

DOCMOSIS-JAVA DEVELOPER REFERENCE

e Make sure automatic updates are not enabled (on Linux systems, some packages will
auto-install updates and this is typically a risky business).

e |nstall consistent software versions onto all the servers.

XServer and Virtual Frame Buffer

When installing and running Docmosis and LibreOffice, there is no requirement to run either
an XServer or a Virtual Frame Buffer (e.g. xvfDb).

On Linux platforms, you must ensure that a number of X libraries are installed to enable
LibreOffice to operate correctly.

; If you have any trouble launching Docmosis converters on any platform, this is typically
@ an issue with the LibreOffice installation. Please refer to the FAQ online for the latest
issues and solutions when diagnosing issues.

3.3. Installing Docmosis (Core Engine)

Installing Docmosis into an application is simply about adding Docmosis libraries and
configuration to your existing or new application. If you are using converters on the same
server, you will also set up the converters at the same time. If you are using distributed
converters (converters that run separate processes from your application (possibly on a
remote host), please also refer to Installing Remote Converters on page 22.

Installing Docmosis itself is a matter of ensuring the docmosis.jar and required configuration
files are visible to the application in which you are using Docmosis. Note that most
configuration can be done programmatically using the Configuration class, in which case only
the docmosis.jar file is required.

Typically, this means making sure that the following files are visible in your Java classpath:

® docmosis.jar
This file contains the Docmosis libraries
® docmosis.properties

This file contains settings required by Docmosis in general. This file can be removed if
your code launches Docmosis with the Configuration class (available since version 3.3)

® converterPoolConfig.xml

This file defines the locations of the converters that are available to the Docmosis core
engine. This file is also optional if using the Configuration class.

Version 4.9 | October 2025 Page 19 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

3.3.1. Docmosis Configuration Properties

In Docmosis, there are several properties that you can configure to get the best out of your
system. The default docmosis.properties file contains common properties that can be
configured. The distributed docmosis.properties file contains settings relevant to both
converters and the core. Each property is preceded with a comment indicating the use of the
property and which part of Docmosis the property affects.

The Docmosis properties can also be provided via code instead using the Configuration class
(available since version 3.3). In this case, the docmosis.properties file is not necessary.
This is an example of using the Configuration class:
Configuration dmConfig = Configuration.standard()
.setKeyAndSite ("XXX-XXX-XXX-XXX-XXX-", "XXX XXX")
.setOpenOfficelLocation (“C:/Program Files/LibreOffice”);

SystemManager.initialise (dmConfiqg) ;

In general, you can use the default properties provided with the Docmosis distribution. You
will only need to set the value for the license and the location of the LibreOffice installation.

; Docmosis properties can also be set via Java’s System properties, though this is not
@ recommended for application servers (since it makes the settings global to all
applications in the application server). The load order for Docmosis properties is:

Load from docmosis.properties file
Load from System properties
Load from Configuration object

Properties are loaded (if available) at each stage overwriting any settings from a
previous stage.

; The docmosis.properties file is searched for in the root of any entry of the Java
D Class Path. You may need to add an entry to the Java Class path for the location of the
docmosis.properties file, if you are using one.

3.3.2. Configuring the Converter Pool

All of the converters available to Docmosis belong to the converter pool. They are identified
in the converterPoolConfig.xml file or using the Configuration.setConverterPool ()

Version 4.9 | October 2025 Page 20 of 74

d,

DOCMOSIS-JAVA DEVELOPER REFERENCE

method. The converter pool allows configuration of standalone converters and groups of
converters. By default, the Configuration class configures a single converter to be launched
automatically (embedded).

If using a converterPoolConfiguration file, the configuration will reflect what is specified
in the configuration file.

; The number of converters you can run is determined by the edition of Docmosis you are
D running. The first number in the edition tells you the maximum number of converters
you can run. A D-NOO can run ‘N’ converters. For example: a D-400 can run 4
converters.

f Embedded converters are convenient in that they do not need to be started separately -
@ the Docmosis core engine will start them and shut them down automatically. The
disadvantages, however, include:

e they must run in the same VM as the core engine

* the load cannot be distributed to other hosts around the network

e some web or application servers will not allow the required processes to be
automatically launched

e they cannot be taken offline or started up as required without restarting the core
engine.

There are several elements contained in the converter pool configuration file:

* The converter-pool element can contain one or more group elements. It also has two
attributes:

= officeConverterClass specifies the Java class used for a converter.

= defaultGroup identifies which of the groups defined in the pool configuration is the
default group. If no group is specified in the ConversionInstruction when
rendering a document, Docmosis invokes a converter from the default group.

e The group element contains one or more instance elements. It also has two attributes:
= name is the name of the group. It must be unique in any one configuration file.

"= descriptionisa plainlanguage phrase that describes the group, its purpose and
the nature of the support that it provides for conversion.

e Theinstance element is an empty element with two attributes:

Version 4.9 | October 2025 Page 21 of 74

d

DOCMOSIS-JAVA DEVELOPER REFERENCE

® hostname identifies the name of the computer on which the converter is installed.
An IP Address may be specified instead of a host name.

= port identifies the particular port on which an instance is listening. Your choice of
ports is arbitrary and should be selected to be compliant with your existing
environment. The ports chosen will need to match the ports used when launching
the remote converters from a start-up script.

= sslProtocol optionally specifies that encryption should be applied to the
connection. The protocols available are determined by the Java you are using.
Typical examples are “SSL”, “TLS", "TLSv1".

" sslTrustStore optionally specifies the path to the “trust store” which provides
certificates used for encryption.

" sslTrustStorePw optionally specifies a password to use to read the trust store. A
password is typically not needed to read the certificates from the store.

3.4. Installing Remote Converters

This section provides details of the installation for converters. If you intend to run converters
on the same machine as the Docmosis core engine, you can ignore this section. Refer to the
note above for the disadvantages of using embedded converters.

To install a converter, make sure that the host you are working with satisfies the minimum
requirements (see section 3.1 Planning your Environment).

; You can install additional converters at any time by changing the converter pool
@ configuration and starting additional converters. This facility is controlled by your
existing Docmosis license.

3.4.1. Preparing Converters for Use

Distributed converters are designed to run continuously and listen on specific ports for a
connection from the Docmosis core requesting a conversion. To launch a converter manually,
you can run a script as required or you can launch the converters during host computer’s
start-up sequence.

You will need:

1. the docmosis.jar file

Version 4.9 | October 2025 Page 22 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

2. adocmosis.properties file

3. alaunch script or wrapper suitable to your operating system that will be used to launch
the converters (at boot time also).

If you are using SSL/TLS to encrypt the socket communication, you will need to launch the
converters with the appropriate security.

3.4.2. Enabling SSL/TLS Communications to Remote Converters

To secure the communications to the remote converters, both the core and the converter
need to be security enabled. The remote converter can specify this on the command line at
startup:

usage: java com.docmosis.document.converter.RemoteConverter <-h>
usage: java com.docmosis.document.converter.RemoteConverter <port>
[ssl=alg]

usage: java com.docmosis.document.converter.RemoteConverter <exe>

<converterClass> <port> [ssl=alg]

-h : print this usage

<no args> : run the converter on port 2100

port : run the converter on the given port

port ssl=protocol : run the converter on the given port and enable

SSL with specified protocol

exe converterClass port : set the executable, converter class and port
to use
exe converterClass port ssl=protocol : set the executable, converter

class and port to use and enable SSL with specified protocol
The protocols available are determined by the version of Java you are using.

Please visit the Docmosis resources website (https://resources.docmosis.com) to get
more information and example files.

’ Developing and initiating system-level features will require the appropriate system
@ access privileges and the detail of implementing them is beyond the scope of this
document.

Version 4.9 | October 2025 Page 23 of 74

d,

DOCMOSIS-JAVA DEVELOPER REFERENCE

3.5. Adding Support for Barcodes

When the Barcoded4J (http://barcodedj.sourceforge.net/index.html) libraryis
present, Docmosis can generate the following barcode formats:

e (Code39 (“code39)

e (Codel128 (“code128")

e ITF14 (“itf14")
Docmosis requires only barcode4j . jar to be added to the class path.

For more information about creating barcodes, please refer to the Docmosis-Java Template
Guide.

3.6. Adding Support for QR Codes

When the Zxing (https://github.com/zxing/zxing) library is present, Docmosis can
generate QR Codes.

Docmosis requires only ZXing's core.jar to be added to the class path.

For more information about creating QR codes, please refer to the Docmosis-java Template
Guide.

3.7. Adding Support for Processing of image meta data
(EXIF)

Please note that this is an Experimental feature.

Modern image formats can specify that an image should be rotated, for example when
viewed. This information can now optionally be processed by Docmosis. To enable this
feature, the following libraries need to be present on the class path:
1. metadata-extractor library (https://github.com/drewnoakes/metadata-
extractor).
2. xmpcore library, a dependency of the metadata-extractor library

(https://central.sonatype.com/artifact/com.adobe.xmp/xmpcore)

Version 4.9 | October 2025 Page 24 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

Additionally, the following property needs to be set:

-Ddocmosis.populator.image.processExifData.enabled=true

Version 4.9 | October 2025 Page 25 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

4. GENERATING DOCUMENTS

The main function of Docmosis is to process data provided by an application and merge it
with a template to generate formatted documents (also known as “the fun part”). The
DocumentProcessor class drives document generation. It contains the render methods that
pull the templates and data together to generate the documents.

In general, the steps for the generation of the documents are:
e Initialise Docmosis (this is a one-off action).
e Register any new or updated templates (this is one-off or as required),
¢ Identify a template in the template store.
e Define the conversion instructions.
e Define the output destination.
® Prepare the data.
e (all the document processor’s render method.
* Close down Docmosis (this is a one-off action).

These steps are described in more detail throughout this section.

4.1. Initializing Docmosis

When your application starts (or is ready to begin using Docmosis) it will need to use the
following code to enable Docmosis to start its own processes for document generation.

SystemManager.initialise();

Initialising performs many tasks, and one key task is to establish connections to the various
converters that have been configured. Almost all tasks Docmosis performs are dependent on
at least one converter being online. The startup can take quite a long time which means your
application should initialise Docmosis once (eg at startup) and leave it running until your
application shuts down. At shutdown, call SystemManager.release () to stop Docmosis
and it will release the resources it is using.

Once Docmosis is initialised, the typical next step is to register a set of templates (or update
the current set of registered templates). Refer to section 4.2 Registering Templates for the
various ways in which templates can be registered.

Version 4.9 | October 2025 Page 26 of 74

d

DOCMOSIS-JAVA DEVELOPER REFERENCE

With a set of pre-optimized templates ready for use, Docmosis can be tasked with getting
down to the business of generating documents.

4.2. Registering Templates

In Docmosis, all templates are registered into a facility called the template store. Templates
must be registered in the store before they can be used for a document generation. The
location of the template store is typically specified in docmosis.properties.

The template store is a cache of templates that have been pre-analysed and optimized to
make the rendering of each document as fast as possible.

4.2.1. Help with Template Registration
Docmosis has several features to help with template registration:

1. Convenience methods

2. Auto Registration Monitor

3. The DropStoreHelper class
4. The StoreHelper class

These provide a very flexible set of tools allowing the developer to work anywhere between
managing the template store directly to setting some properties and allowing Docmosis to
take care of the rest. The following sections detail each of these options.

See also the online APl documentation at https://resources.docmosis.com.

4. Template Registration is not currently thread safe when updating a template. Two
D processes should not attempt to register the same template at the same time. If a
template is being used (for rendering documents) when an update to that template is
attempted, the update will fail and you will need to try again.

4.2.2. Using Convenience Methods

Convenience methods in the DocumentProcessor class will automatically register a template
as required (i.e. if it is new or modified). There is a small cost in examining the template to
see if it is new or modified, however, unless your system must be geared for optimal
performance, this overhead is small.

Version 4.9 | October 2025 Page 27 of 74

https://resources.docmosis.com/

DOCMOSIS-JAVA DEVELOPER REFERENCE

The following methods will automatically register the given template as required, before
rendering the document:

public static void renderDoc (File template, File outputFile, DataProvider
dp)

public static void renderDoc (File template, OutputStream outputStream,
ConversionFormat format, DataProvider dp)

4.2.3. Registering Templates Automatically

There are two properties that may be configured to enable Docmosis to monitor a set of
directories or JAR archives for templates automatically. This means that templates can be
registered and updated without having to write any code. The properties are:
docmosis.template.monitor.sourcepath
docmosis.template.monitor.period

docmosis.template.monitor.context

The sourcepath property is a semi-colon (;) delimited list of directories or Jar archives to
watch for changes. This property should be used to point to directories and archives
containing only templates since all files are scanned and evaluated for suitability as templates.
This will waste resources if other files are present.

The period property is used to control the frequency of checking for template changes. The
following settings apply:

Check every <value> seconds all templates in areas specified by the path

>0
and load in any new or changed templates.
0 Load all templates from the path once when
SystemManager.initialise () is called.
-1 Disable automatic loading.

The context is an optional property which causes templates to be loaded into a
TemplateContext (path) specified, rather than the root context.

4.2.4. Using the DropStoreHelper Class

The DropStoreHelper class provides methods to register whole directories or Jar archives of
templates recursively.

Version 4.9 | October 2025 Page 28 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

When registering templates the DropStoreHelper infers:

e the context from the directory names in the file-system path of the source templates;
e the template name from the filename.

The DropStoreHelper processing of directories and archives works as follows:

e traverses the directory structure below the specified location;
* recognizes all documents that are potential Docmosis templates;

e creates contexts in the template store that reflect the directory structure of the source
templates;

* registers new templates;
* re-registers updated templates.
The following code shows how simple the DropStoreHelper class is to use:

DropStoreHelper helper = new
DropStoreHelper (TemplateStoreFactory.getStore());
File dir = new File("/dm-templates/deploy");

helper.process (dir) ;

4.2.5. Using the StoreHelper Class

The storeHelper class is the "lowest level" class for registering templates into the store. It
provides specific methods to load a template into the store and name the template within the
store as desired.

The following example uses the StoreHelper class to perform the registration of a template
(Referral.odt) into the template store under a context called medical and with the name
Referral.

TemplateStore store = TemplateStoreFactory.getStore();

TemplateContext context = new TemplateContext ("medical");
TemplateIdentifier templatelId = new TemplateIldentifier ("Referral",
context) ;

StoreHelper.storeTemplate (templateId, new File("Referral.odt"), true,

store) ;

Version 4.9 | October 2025 Page 29 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

4.3. Referencing Templates

When rendering a document, Docmosis needs to reference the appropriate template for the
process. To refer to a registered template you specify it by using a TemplateIdentifier
instance. The following snippet shows how you might reference a template called “Referral”:

TemplateIdentifier templateld = new TemplateIldentifier ("Referral");

If you have a large number of templates, or you simply have them organized into hierarchies,
then you will need to specify the context of the template. The following example references
the “Referral” template in the “medical/client” context:

Templateldentifier templatelId = new Templateldentifier ("Referral",

("medical/client");

If you use the DropStoreHelper class or the Auto Registration process to load directories of
templates into the template store, then it is likely you already have templates in various
contexts matching the directory structure of the original templates.

To find out what templates are registered in the store, the following code can be used:

TemplateContext rootContext = new TemplateContext (“.”);

TemplateDetails[] templates =
TemplateStoreFactory.getStore () .findByContext (
rootContext, true);
for (int i1i=0; i<templates.length;i++) {
System.out.println (i + "context=" +
templates[i] .getContext () .getPath ()
+ " name=" + templates[i].getName());

}

It will produce a list of the registered templates, including the context and the name. This
shows precisely how any of the templates in the template store can be referenced; by creating
a TemplateIdentifier with the given name and context.

The TemplateDetails class is a subclass of TemplateIdentifier and simply provides
more information about the template (such as size, modification date etc) than the pure
location.

; Another way to find the context of your templates, look into the configured template
@ store (by default a directory called “templatestore” in the location your application

Version 4.9 | October 2025 Page 30 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

runs) to see what the structure is.

4.4. Defining the Conversion Instructions

Conversion instructions provide specific directions for the document generation process. In
the following example, the conversion instructions set the document to be output in three
formats. Note that multiple formats imply the output file will be a compressed ‘zip’ package.

SimpleConversionInstruction instruction = new
SimpleConversionInstruction () ;
instruction.setConverterGroupName ("batchl")
instruction.setConversionFormats (new ConversionFormat[] {
ConversionFormat.FORMAT ODF,
ConversionFormat.FORMAT WORD,
ConversionFormat.FORMAT PDF, });

instruction.setOutputFileName ("exampleDocument") ;

4.5. Defining the Output Destination

Docmosis allows documents to be rendered to any destination. The DocumentProcessor
class renders documents to OutputStreams or to Files. You can send a document to
anywhere you like as long as you can create an OutputStream to reach it. This includes
anything from local and remote files to Databases to Web Based document repositories or
email sub-systems.

4.6. Preparing the Data

All data is provided to the render process via the DataProvider interface. The data is
rendered into the desired format by merging the data in the data provider with the elements
in the template.

Docmosis provides several DataProvider implementations covering different sources of
data. There is only one class which the developer will typically need to use to collect the data
together for a document: the DataProviderBuilder class.

Version 4.9 | October 2025 Page 31 of 74

d

DOCMOSIS-JAVA DEVELOPER REFERENCE

The DataProviderBuilder class provides many methods for collecting data from Strings,
Files, Databases and Java Objects. Data can be comprised of any combination of sources
required. The following example collects some data together from a few difference sources
including a database query and a Java object:

DataProviderBuilder dpb = new DataProviderBuilder();

dpb.add ("documentSource", "Repository Alpha");

dpb.add (imageFile, "diagnosticChart");

dpb.addSQL (resultSet, "results");

dpb.addJavaObject (new MedicalRecordData (123244L), "medicalData");

With this data collected, you can then use it in a call to a render method. For example:

DocumentProcessor.renderDoc ("medicalTemplate.docx", "medicalDoc.pdf",

dpb.getDataProvider ());

4.6.1. Adding Simple Textual Data

To add simple textual data, use the DataProviderBuilder.add () methods. There are
several methods to add key-value pairs that can be used by templates. The following
examples show some of these methods in use.
DataProviderBuilder dpb = new DataProviderBuilder () ;
// add the name of the project
dpb.add ("projectName", "Deisel Institute");
// add some contact information
dpb.addAll (new Stringl[][]{
{"contactl", "Jerry Squire"},
{"contact2", "Amy Dice"}});
// add profile data

dpb.addFile (new File ("companyProfile.txt"), '[|'");

See the Docmosis API for more methods of the DataProviderBuilder class.

4.6.2. Adding Textual Data with HTML-like Mark-up

Docmosis can optionally interpret textual data, looking for bold, italic or underline indicators
within the text itself.

Text is added same way as above, using the DataProviderBuilder.add () methods.

Version 4.9 | October 2025 Page 32 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

For example:

DataProviderBuilder dpb = new DataProviderBuilder();
dpb.add ("myMarkup", "This will be bold and this will be

<u>underlined</u>");

The text:

"This will be bold and this will be <u>underlined</u>"
Will be displayed in the document as:
This will be bold and this will be underlined.

The following table lists the supported mark-up.

 and Bold the text between the two tags.

<i> and </i> Italicize the text between the two tags.

<u> and </u> Underline the text between the two tags.
<bgcolor="#rrggbb"/> Change the background colour of the table-cell containing this

text (which means it only applies to content within tables).

This tag must be at the very beginning of your data item to take
effect. #rrggbb is a typical red, green and blue html colour
specification (eg "#££0000" is red).

By default, the html processing feature is disabled to allow text with any content to be written
into the document verbatim. It can be turned on by changing the default setting in your

docmosis.properties file to:

docmosis.populator.field.markup.process=true

It can also be changed on a per-document basis by using the
DocumentProcessor.render (RenderRequest) method, since the RenderRequest allows
the setting to be overridden:

RenderRequest rr = new RenderRequest () ;

rr.setProcessStylesInText (Boolean.TRUE) ;

See the Docmosis APl for more methods of the RenderRequest class.

Version 4.9 | October 2025 Page 33 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

4.6.3. Adding Structured Data Using Strings

The DataProviderBuilder class allows data to be added using simple strings and an

indexing notation that can build hierarchies of data.

The following example code uses the DataProviderBuilder to create a set of members.

Each member has a name, addr, and DOB value. Such structures can be used to populate

repeating sections of templates. The dot notation and indexing should be fairly intuitive,

given this example.

private static DataProvider buildDataProvider ()

{

DataProviderBuilder dpb = new DataProviderBuilder () ;

dpb.addAll (new String[][] {
{"projectName", "Project X"},

{"member.0.name", " Freddy James"},

{"member.0.addr", "10 Laburnum Crescent,

{"member.0.DOB", " 10 July 1980"},

{"member.1l.name", " Paul Stuo"},

{"member.l.addr", " 3 The Lane, Shayle,

{"member.1.DOB", " 10 Jan 1956"},

{"member.2.name", " Sam Wells"},

{"member.2.addxr", ""},

{"member.2.DOB", "™ 1 Apr 2000"},

{"member.3.name", " Andrew Stevens"},

{"member.3.addr", "™ 6/12, Mewson Towers,
WA 6000"},

)

return dpb.getDataProvider() ;
}

Loganville,

NSW 2334"},

Murray Street,

NT 6743"},

Perth,

There is no limitation to the depth of structures you can create using this form of data.

Version 4.9 | October 2025

Page 34 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

4.6.4. Adding XML Data

Data that is in XML format provides a hierarchical structure that makes it highly suitable for
matching to Docmosis templates. There are several methods in the DataProviderBuilder
class to utilise XML data whether it is in a file, a document or an input stream.

The XML root node forms the root of the data structure being added by default though this
may be overridden, and the XML attributes are included in the data.

Several DataProviderBuilder methods also allow you to pass an XMLNodeFilter
instance. The filter will be used to allow you application to dynamically filter out parts of the
XML that are not intended for the document being rendered.

4.6.5. AddingJSON Data

JSON format provides an ordered, hierarchical structure much like XML, but with lower
overhead. Docmosis supports direct use of JSON format data, allowing JSON data to be
aggregated with any other data in the bataProviderBuilder.

A simple example adding some person details in JSON format might look like this:

DataProviderBuilder dpb = new DataProviderBuilder () ;
String data="{\"name\":\"Damien\", \"address\":\"1 Test Street\"}";

dpb.addJSONString (data) ;
See the javadoc for the addgsoN* methods of the DataProviderBuilder in the Docmosis
API for more details.
4.6.6. Adding Image Data
Images can be added to the data using the one of several bataProviderBuilder methods.

Firstly, a stream of image data can be added directly as shown in the following snippet which
retrieves an image using a (fictitious) getChartImage () method and adds it with the name
chart1:

DataProviderBuilder dpb = new DataProviderBuilder () ;

InputStream chartStream getChartImage () ;

dpb.addImage ("chartl", chartStream);

If images are contained in files the simplest method to reference them is:

Version 4.9 | October 2025 Page 35 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

DataProviderBuilder dpb = new DataProviderBuilder();

dpb.addImage ("chartl", new File ("chart.png")):;

The DataProviderBuilder class also allows image files to referenced using add (String,
String) . This provides another convenience method. The following example will add the
file chartl.jpg to the data under the name chart1:

DataProviderBuilder dpb = new DataProviderBuilder();

dpb.add ("chartl", "[image:chartl.jpgl"):

This same mechanism works for all key-value methods in Docmosis, including adding from
files of key-value pairs. The special prefix for the value “ [image:” is deemed to mean an
image in a file.

If your image data is contained inside Databases or Java objects, then read on to the following
sections to see how to add these types of data sources. Also see section 5 Matching Data to
Templates, which discusses how image data is retrieved for population.

See the Docmosis API for more methods of the DataProviderBuilder class.

4.6.7. Adding Java Objects

When you add Java objects to a DataProviderBuilder, Docmosis will extract data from the
Java object by calling public methods on the objects during population. The fields in the
template itself will drive Docmosis to extract the required information.

The following example code adds a Java object called personDetailsObject to the data
available for the template (using the term "personDetails"):
DataProviderBuilder dpb = new DataProviderBuilder();

dpb.addJavaObject (personDetailsObject, "personDetails");

In the case above, the template will use the name "personDetails" to access data contained
in the personDetailsObject Java Object.

Docmosis can work with Collections, arrays and custom Java objects in any combinations.
When rendering a document, Docmosis will step into Java objects as directed by the template
fields, so long as the step can be achieved via a public method.

Version 4.9 | October 2025 Page 36 of 74

d

DOCMOSIS-JAVA DEVELOPER REFERENCE

Docmosis does its best to be flexible when retrieving data from Java objects, making the
necessary conversions as appropriate. For example, if a field (<<real>>) is used to display
the value from the getReal () method, and that method returns a boolean, Docmosis will
display the String value of the boolean value. When Docmosis retrieves image data from Java
objects it only looks for methods returning an InputStream, since it is not logical to attempt
any conversions in this case.

During population, the names of template fields will automatically be transcribed into calls
into the Java objects. For example, if the template contained a field:

<<firstname>>

then Docmosis will attempt to find a method to provide the first name in the given
personDetailsObject by calling getFirstname () . More information about how the
template extracts data from the various data sources is described in Section 5 Matching Data
to Templates.

4.6.8. Adding Database Queries

The DataProviderBuilder class also allows database result sets to be added to the data to
be merged into a template. Docmosis will load all data from a given ResultSet into memory,
making it available to the document rendering process.

There are two methods for adding ResultSets to the DataProviderBuilder. The first
takes a ResultSet and a String name. All data in the ResultsSet will be made available
using the column names from the result set under the context of the given name. For

example:
ResultSet rs = statement.executeQuery ("select name,address from
people");

DataProviderBuilder dpb = new DataProviderBuilder();

dpb.addSQL (rs, "records"):;

This will create a repeating set of “records” entries, each containing a name and address from
the query results. It is equivalent to:

records.(0.name

records.0.address

records.l.name

=

records.l.address

N

records.2.name

Version 4.9 | October 2025 Page 37 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

records.?2.address

If the template has a repeating section (etc list, table rows) using “records” as the identifier,
then each repetition will have access to a name and address accordingly.

The second method for adding ResultSets to DataProviderBuilders is significantly more
sophisticated. It provides the means to transform the given Resultset, which is a two-
dimensional grid of data, into a hierarchy of information. For example:
ResultSet rs = statement.executeQuery (
"select h.id as hotelid, h.name hotel, f.id floorid, f.name floor, " +
"f.capacity, f.roomcount " +
"from hotel h, floor £ " +
"where f.hotelid = h.id");
DataProviderBuilder dpb = new DataProviderBuilder():;
Discriminator hotelDiscriminator = new Discriminator ("hotelid");
DataProviderSQLGrouping hotelGroups = new
DataProviderSQLGrouping ("hotels™,
hotelDiscriminator, new String[]{"hotel"});
Discriminator floorDiscriminator = new Discriminator ("floorid");
DataProviderSQLGrouping floorGroups = new
DataProviderSQLGrouping ("floors"™,
floorDiscriminator, new String[]{"floor, roomcount"}):;

dpb.addSQL (rs, new DataProviderGrouping[] {hotelGroups, floorGroups}):;

The code above uses Discriminators and DataProviderSQLGroupings to group the data
returned by the query into hotels, and within each hotel data is grouped into floors. The data
resulting data is equivalent to:

hotels.0.hotelid

hotels.0.hotel

hotels.0.floors.0.floorid
hotels.0.floors.0.floor
hotels.0.floors.0.roomcount

hotels.0.floors.1l.floorid
hotels.O.floors.1l.floor

hotels.0.floors.l.roomcount

Version 4.9 | October 2025 Page 38 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

hotels.l.hotelid

hotels.l.hotel

hotels.l.floors.0.floorid
hotels.l.floors.0.floor
hotels.l.floors.0.roomcount

hotels.l.floors.l.floorid
hotels.l.floors.1l.floor

hotels.l.floors.l.roomcount

The discriminators are used to determine the difference between data elements. In the case
of the hotels, the hotel id is used to separate hotels. The hotel name would often be
applicable also, but the use of an id would allow two hotels that have the same name to be
grouped and thus reported separately.

The groupings combine a discriminator and an array of columns to construct the group. For
each discriminator value, a separate copy of the group will be created, and the group will also
contain values for the other mentioned columns.

Note that these transformations are reasonably complex, and it may take a bit of practice to
become proficient.

4.7. Generating the Document

Generating the document means merging the data in the DataProvider with the template
elements to generate the output documents. The document is rendered according to the
instructions in the conversion instructions.

When you have prepared all of the objects for the document generation, the document
production is invoked by calling one of the render methods of the DocumentProcessor class.

One example is:
DocumentProcessor.renderDoc (templateId, dp, instruction, streamTo);

There are a few variations of the render method. For more information, refer to the online
APl documentation at https://resources.docmosis.com.

Version 4.9 | October 2025 Page 39 of 74

https://resources.docmosis.com/

DOCMOSIS-JAVA DEVELOPER REFERENCE

4.8. Closing Down Docmosis

When an application is shutting down or no longer needs Docmosis, it should close down
Docmosis with the following call:

SystemManager.release ()

This should not be done after each render - the performance impact would be bad.
Docmosis is only meant be shutdown when document generation is no longer required.

4.9. Error Handling
Docmosis offers two ways to deal with errors encountered during processing:

1. "development mode" - acknowledge errors but complete the operation if possible
2. "production mode" - treat errors as fatal and throw an exception

These two "modes" of operation apply separately at the template analysis/registration stage
and the document production/render stage.

4.9.1.1. Controlling Error Handling

Default behaviour for error handling can be specified using the values below:

true or false

true = production mode Template
docmosis.analyzer.error.fatal)]

false =development mode Registration

Defaults to false

true Or false

true = production mode Document
docmosis.populator.error.fatal

false =development mode Rendering

Defaults to false

Error handling can also be overridden in a ‘per-operation’ fashion. To control the setting for
the template registration process, you need to use a TemplateStore that considers errors
fatal. For example, when using the DropStoreHelper to register templates:

Version 4.9 | October 2025 Page 40 of 74

d

DOCMOSIS-JAVA DEVELOPER REFERENCE

TemplateStore store = TemplateStoreFactory.getStore(true); // set errors
fatal
DropStoreHelper dsh = new DropStoreHelper (store);

//process templates using this helper

To override the error handling behaviour of document rendering, use a RenderRequest
instance with the DocumentProcessor:

RenderRequest rr = new RenderRequest();
rr.setPopulationErrorsFatal (true); // override rendering to treat
errors as fatal

...// set other request properties

DocumentProcessor.renderDoc (rr) ;

4.9.2. Recommended Configurations

The following table describes the recommended configurations for each type of execution
environment:

Template Document

Environment Net Effect

Analysis Mode | Render Mode

As far as possible, a document will always be
generated. The document will highlight the

Development location of the problem using red text. Details

and development development about the error and possible remedies are

Early-Test placed in the footer of the affected pages.
This makes diagnosing template issues
simpler.

A document with errors will never be
development production delivered. The process will fail with an error
instead.

Late-Test and
Production

Docmosis is configured to be in "development" mode by default for all operations to make it
easy to get started. See section 7.4 Properties for Production for more information.

Version 4.9 | October 2025 Page 41 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

4.10. Other Features

Docmosis supports various other features for document generation. These can be controlled
by settings on the ConversionInstruction and the RenderRequest instances passed to
the DocumentProcessor.render () methods.

The Docmosis Java APl is a good source of detail for each of these classes.

4.10.1. Setting Password Protection

Password protection for opening documents can be individually specified for Word (.doc
format only) and PDF documents. The following example sets passwords for both formats:

ConversionInstruction ci = new ConversionInstruction():;

ci.setPdfPasswordProtect ("mySuperl01Pw") ;

ci.setWordPasswordProtect ("mySuperl01Pw") ;

Z | ’] If the password is lost or forgotten you may not be able to read your documents.

4.10.2. Using Watermarking

Watermarking allows text to be placed broadly across the page, separate from the document
content. This is ideal for marking documents as draft, for example. To watermark in PDF
documents, use the setPdfWatermark (String) method of ConversionInstruction.
Further control of the watermark (colour, rotation etc) is provided with the other
setPdfWatermark* () methodsin ConversionInstruction.

If you are producing non-PDF format documents and you want to generate a watermark, this
needs to be controlled in your template. The best general approach is to place an image in
the template that is anchored to conditional text in the header or footer using the Microsoft
Word or LibreOffice image anchor.

4.10.3. Setting PDF Title and Initial View

There are many other PDF controls that can be specified using the conversionInstruction
class. The following example sets the title for the PDF (displayed in the PDF window bar
usually) and some initial view settings.

ConversionInstruction ci = new ConversionInstruction();

Version 4.9 | October 2025 Page 42 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

ci.setDisplayTitle (true);
ci.setPdfOpenInFullScreen (true);

ci.setPdfHideViewerToolbar (true) ;

The actual title text comes from the document title property of your template.

4.10.4. Enabling PDF Archive Mode

Archive Mode is intended for creating PDFs that are PDF/A compliant for the purposes of long-
term storage. The PDF is self-contained meaning fonts, images and all other content must be
standalone in the document.

Note that this mode is (by design) incompatible with some PDF features such as hyperlinks to
external sources.

Archive mode can be enabled by setting the setPdfVversion (String) method of
ConversionInstruction, with the desired archive mode version (or pdf version). Note that
the version of LibreOffice being used must support the version desired. A table of valid
options are presented below.

PDF/A-1Db

PDF/A-2b Available from LibreOffice 6
PDF/A-3b Available from LibreOffice 7
PDF1.5

PDF1.6

PDF1.7 Available from LibreOffice 7.5

Historically, archive mode was enabled by specifying the setPdfArchiveMode (boolean)
method of ConversionInstruction, but this is now depreciated.

4.10.5. Setting PDF Accessibility / Low Vision Mode

“Tagged” Mode is intended for creating PDFs with extra information embedded for
accessibility tools such as document-readers to be able to read the more from the document.
One particular example is reading the ALT-Text behind an image, allowing the reader tool to
describe the image to the user.

Version 4.9 | October 2025 Page 43 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

This is enabled by specifying setPdfTagged (boolean) method of

ConversionInstruction.

@ By default, this setting is not enabled, but enabling it adds the extra information to the
PDF.

Version 4.9 | October 2025 Page 44 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

5. MATCHING DATA TO TEMPLATES

The provision of data into the template is the most interesting and challenging feature of
Docmosis. Data may come from a variety of sources and be combined to populate a
template. Both the template and the data can evolve to contain quite complex structures.
The key to success is in ensuring the structures match.

This chapter provides information about connecting the data from your application to the
templates using Docmosis. Section 5.1 discusses how data is structured, and section 5.2
discusses how elements of the templates relate to the data structures.

5.1. The Sources of Data

The sources of data that Docmosis can use range from simple key-value pairs of Strings
through to complex data structures embodied in Java objects. Since templates are often
structured (containing nested or repeating content), the data must have a matching structure
so that Docmosis can marry the two.

All sources of data can provide Docmosis with a structure. The following sections describe
how the data can be (or is) structured.

5.1.1. String Data

Structure is indicated by using the period (.) character in the keys for String data. The
DataProviderBuilder class detects the period character in keys and automatically
structures the data.

For example this code:

DataProviderBuilder dpb = new DataProviderBuilder();
dpb.add ("person.name", "Frederick");

dpb.add ("person.age", "20");

automatically creates a data structure of a person containing attributes name and age. The
DataProviderBuilder splits Strings around the period character creating containers of sub-
data as required.

Going a step further, this type of data can be indexed which gives order to containers of data.
This example code creates two person containers each containing a name and age and
ordered according to the indexes 0 and 1. The template may reference a specific person in
this ordered list or loop over each person:

Version 4.9 | October 2025 Page 45 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

DataProviderBuilder dpb = new DataProviderBuilder();
dpb.add ("person.0.name", "Julie");

dpb.add ("person.0.age™, "257);

dpb.add ("person.l.name", "Frederick");

dpb.add ("person.l.age™, "20");

This type of String information can be constructed to any depth and can be sourced from Java
code or delimited files.

5.1.2. Java Objects as Data

Java Objects are already hierarchically structured. A Person class may contain information in
an Address class, which may in turn contain different aspects of an address as Strings or other
classes. When a Java object is added using the DataProviderBuilder, all publicly visible
parts of that object are available to the template, courtesy of Java’s excellent Reflection
facilities.

Docmosis translates the names of fields into method calls on the Java objects and makes
some special allowances for arrays and Collections.

The DataProviderBuilder method addJavaObject(Object object, String name) is the easiest way
to add Java objects to work with. This will make the Java object, and all the data contained (or
referenced) by it available to the template, under the given name.

@ Add Java Objects using the addJavaObject(Object, String) method rather than the
addjavaObject(Object) method. It is much safer to give the Java object a name via
which it can be referenced in the template, otherwise a Java object can mask (or hide)
other data.

@ To help with debugging issues when looking up data in Java object hierarchies, turn the

logging level of your logging software (Log4/ or Java logging) to DEBUG/FINEST. This will
log out detailed information about what methods Docmosis is attempting to call on

what Java classes. This can make it clear when the template and Java data don't align.

5.1.3. SQL Query Data

The DataProviderBuilder class allows SQL Queries to be treated as simple 2-D grids of
data, or to be transformed into a data-hierarchy to match a template. Query data has a

Version 4.9 | October 2025 Page 46 of 74

d

DOCMOSIS-JAVA DEVELOPER REFERENCE

structure already (a grid of rows and columns) but can be transformed into a hierarchy to
match the template precisely.

Docmosis uses the meta-data (such as column names) as keys into the data, whereas String
data has explicitly defined keys and Java Objects have method signatures.

5.2. Populating Data

The function of merging data into the document is driven entirely by the template. Docmosis
works through the template using the fields as guidance to determine which data to fetch and
use for either inserting into the document or making decisions (such as exclusions or
repetition). If the data provider has data that is not required by the template, then it is simply
not used. For example, a fully populated Person object could be used in the rendering of a
document from a template that only requires the name of the person. In this case, Docmosis
would only fetch the data for the name of the person.

The following sections describe the fields in a template, and how Docmosis identifies the data
to retrieve from the data provider.

5.2.1. Using Simple Lookup Fields

When Docmosis encounters a simple lookup field, it uses the name of the field and makes a
call to the data provider to provide a value. For example, the field:

<<firstname>>

Will result in lookups for data in the following ways:

Key “firstname” Method getFirstname () Column “firstname”

This is fairly intuitive behaviour, even for the Java method invocation which simply prepends
get and makes the first letter upper-case.

There is some extended notation available only for fields that are to fetch data from Java
objects. Firstly, instead of using the field name to find a matching getName () type of
method, the field may contain brackets “()* characters at the end of the name to indicate the
name should be taken literally. Further, the literal method can be passed String parameters
directly from the template. These behaviours are best shown with a few examples:

Version 4.9 | October 2025 Page 47 of 74

d

DOCMOSIS-JAVA DEVELOPER REFERENCE

Field Name Java Method Invocation

Simple field name transformed

<<firstname>> getFirstname ())
into a get method
) . Field name with () characters
<<getFirstname () >> getFirstname () e)
indicating literal method name
, , Field name with () characters
<<firstname ()>> firstname () o)
indicating literal method name
Literal method name call with
<<firstname ('lower')>> firstname ("lower") single string parameter (value

"lower")

_ _ Literal method name call with
firstname (new Stringl[]

<<firstname ('lower',6'2"')>> i i
() ["Lower™, "2"}) single string[] parameter

(values "lower" and "2")

@ Docmosis maps the name of the field to a Java method or to an SQL column if that is
the underlying data. If the data retrieved from the method or column is not a String
type, it is displayed as text on a best effort basis by default. The use of Field Renderers
allows the transformation of any data type (booleans, dates integers etc) into textual
information to be controlled and Docmosis applies some built-in renderers for dates
and booleans. See section 6.1 Using Field Renderers for details.

@ SQL Query data is always given a container (or context) since it is expected to be
repeating rows of data. This means simply referencing a column name in a field will
not work; your field will either need to make a nested lookup (see below) or be inside a
repeating section (which is described further down).

5.2.2. Using Nested Lookup Fields

Nested lookups are performed by fields with names containing a period (.) character. The
term “nested” refers to the way Docmosis will “delve” into data containers. For example, the
field:

<<person.firstname>>

Version 4.9 | October 2025 Page 48 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

will result in lookups for data in the following sequences:

1) get container 1) Object o = 1) get container
"person" getPerson () "person"
2) key "firstname" 2) o.getFirstname () 2) column "firstname"

This means that the “person” container is obtained first, and then from that the “firstname” is
obtained.

The same extended notation as described in section 5.2.1 for Java data applies to nested
lookups as to simple lookups. The following are examples:

Field Name Java Method Invocation

1) getPerson|()
<<person.firstname ()>>
2) firstname ()

1) person ()
<<person () .firstname () >>
2) firstname ()

. . 1) person("james")
<<person ('james') .firstname ()>>
2) firstname ()

As the examples show, literal, non-literal and parameterized forms of fields can be mixed as
desired within the field name.

5.2.3. Indexed Lookup

Fields may make explicit indexed lookups on data. This means that from a collection or list of
items, a template can retrieve a particular item. In combination with nested lookups, this
produces an effective, direct-data-referencing mechanism.

Using square brackets, fields can reference particular containers of data. If our data
contained a collection of people, then the following field:

<<people[0].firstname>>

Would reference the firstname of the first person (at index zero). To get the fourth person’s
first name (index 3) the following field could be used:

<<people[3].firstname>>

Version 4.9 | October 2025 Page 49 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

Docmosis provides other ways to index data; [F] for first, [L3] for last 3 etc. Refer to the
Docmosis-java Template Guide for further details.

i

To loop over collections of data rather than reference explicit numbered items, a
repeating section is used. Refer to section 5.2.5 Using Repeating Sections and Repeating
Table Rows below.

i

Docmosis allows you to reference items that are out of bounds. If you refer to an item

&

that is out of bounds, a blank is returned. If using Java objects as data, some control
over this “forgiving” behaviour can be configured, refer to section 6.2.2.2 Setting
Unforgiving Mode.

5.2.4. Using Image Data

Image data is retrieved from the data sources using the same techniques as for textual data.
The difference is that when retrieving the data, Docmosis is looking for a binary stream of
data rather than text.

Image data can be added using the techniques described in section 4.6.4 Adding XML Data,
and is referenced in the template by attributes of an image placeholder. This is discussed in
detail in the Docmosis-Java Template Guide.

Once the name of the image is known, Docmosis uses the same techniques to look up the
name in the provided data. For Java Reflection, the underlying getter method must return a
type of InputStream, otherwise Docmosis will assume it's not for image data.

For example, if we had a placeholder image labelled img chartl in the template, then the
Java object providing the image would need a method with the following signature to
populate the image:

public InputStream getChartl ()

Docmosis uses the prefix "img " to identify a bookmark that is relevant to Docmosis. If you
bookmark an image but forget the prefix, Docmosis will ignore it.

Version 4.9 | October 2025 Page 50 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

5.2.5. Using Repeating Sections and Repeating Table Rows

Repeating sections of templates are identified by fields starting with the rs prefix (e.g.
rs_people). Repeating table rows are an equivalent method, but use the rr prefix (e.g.
rr people), and work specifically with a specified set of table rows.

The way these fields link to the underlying data follows the same rules as has been discussed
so far (nesting and indexing), but what is different is they also expect some part of the name
to be a container of repeating data.

In the case of rs_people (and rr people), Docmosis will retrieve a container of data from
the data provider under the name “people” and attempt to repeat the template content for
each “person”. Importantly, everything in between the rs people and es people tagsis
automatically referenced in the context of the current “person”.

Consider the following template snippet:

The specifications described here are fictitious. Repeating sections have
a pair of containing
Staff Profiles elements

ssesNiRSels>>

Name: [<<name>>
Position: [<<position>>

Tel: <<telephone>>

Email : Zemailss

Summary:
<<profileSummary>>

$deE ILBSEESED

The content between the tags rs IDSets and es IDSets will be repeated. Docmosis will
look up IDSets from the data and repeat as far as possible. If there is no container of data
then this section of the template will not appear in the final document. Then, for each item in
the retrieved container of data, each of the following data lookups will occur: name, position,
telephone, email, profileSSummary.

Version 4.9 | October 2025 Page 51 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

The sequence of data lookups that would occur when populating this part of the template would look as follows:

T

"IDSets " as elements
2. Key "element.O.name"
3. Key "element.O.position"
4. Key "element.O.telephone"
5. Key "element.O.email"
6. Key "element.O.profileSummary"
7. Key "element.l.name"
8. Key "element.l.position"
9. Key "element.l.telephone"
10. Key "element.l.email"
11. Key "element.l.profileSummary"
12. Key "element.2.name"
13. key "IDSets " as elements
14. Key "element.0.name"
15. Key "element.O.position"

method

method

method

method

method

Method

method

method

method

method

Method

method

method

method

method

getIDSets (

getName ()
getPosition ()

getTelephone ()

as elements

on element O

on element O

on element O

getEmail ()on element O

getProfileSummary ()

getName ()
getPosition ()
getTelephone ()

getEmail () on

on element O

on element 1

on element 1

on element

element 1

getProfileSummary ()
getName ()

getIDSets ()

getName ()

getPosition ()

on element 1

on element 2

as elements

on element O

on element 0

container "IDSets" or grouping
"IDSets" as elements

column "name" on element O

column "position" on element 0
column "telephone" on element 0
column "email" on element O

column "profileSummary" on element O
column "name" on element 1

column "position" on element 1
column "telephone" on element 1
column "email" on element 1

column "profileSummary" on element 1
column "name" on element 2

container "IDSets" or grouping
"IDSets" as elements

column "name" on element O

column "position" on element 0

Version 4.8 | October 2024

Page 52 of 74

d

DOCMOSIS-JAVA DEVELOPER REFERENCE

Repeating sections may be nested to an arbitrary depth (that is, one inside the other) and
they may also be nested inside conditional sections or table cells.

Repeating sections may be named using nested terms but will only repeat over one term of a
nested name. If a nested name is used and no ranges are specified, then only the first item
for each term is used and the last term is repeated over. For example:

rs people.friends

Is taken to mean

rs people[0].friends[*]

which means “repeat for all friends of the first person”. Docmosis allows you to turn this
default behaviour around and using explicit ranges:

rs people[*].friends[0]

which means “repeat for all people and using the first friend”.

; The important thing to remember about repeating sections is that all template fields
D within the repeating section will be in the context of that section already. That s, as far
as the data is concerned, when you step into a repeating section you are stepping into a
container of data.

; As a convenience in the templates, repeating and conditional sections can use a short-
@ hand notation for the end section field. For example, the <<es_>> field can be used to
the currently open repeating or conditional section.

The discussion above relates to repeating table rows in the same way; the content of the rows
that are being repeated is in the context of the data referenced by the rr tag.

5.2.6. Using Fields in Bullets or Numbered Lists

If you place a field in a numbered or bullet list style, Docmosis will automatically try to work
out if you want this list to start repeating over data behind the field. This is simply a short-cut
to populating lists in documents. The Docmosis-Java Template Guide shows a few examples of
adding bullet and numbered lists that make use of this feature.

Version 4.9 | October 2025 Page 53 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

There are no special concerns requiring lining this type of field up with the template. Itis
enough to understand the concepts that have been discussed thus far for looking up nested
and repeating data.

As an example, consider the following template snippet:

Docmosis Example Template

List Expansion Example
These are my friends:

1. <<friends[*].friend>>

This is logically equivalent to a friends field inside a rs_friends[*] (or simply
rs_friends) repeating section. The following table describes the sequence of calls that
could be expected for different sources of data:

container "friends"

key "friends" as method getFriends () as

1 grouping "friends" as
elements elements

elements

3 Key method getFriend() on column "friend" in
"element.0.friend" element 0 of getFriends() element 0

3 Key method getFriend() on column "friend" in
"element.l.friend" element 1 element 1

3 Key method getFriend() on column "friend" in
"element.2.friend" element 2 element 2

3 Key method getFriend() on column "friend" in
"element.3.friend" element 3 element 3

5.2.7. Using Conditional Sections, Conditional Tables Rows &
Columns

Conditional sections, conditional table rows and conditional columns have a similar notation
and cover a “sub-set” of template content. The relevant condition is evaluated and the
template content is either processed or skipped.

Version 4.9 | October 2025 Page 54 of 74

d,

DOCMOSIS-JAVA DEVELOPER REFERENCE

Conditional type fields can use data lookup names directly which expect a true/false type of
answer, or they can specify and expression to evaluate. Expressions themselves are made up
of terms that may be literal values, data lookups or variable lookups as appropriate.

Docmosis uses the name of associated with the cs , cr and cc_ tags to look up and
evaluate a true/false answer. In the following template snippet:

<<cs_independent>>
<<independentName>> is independent.

<<es >>

Docmosis will make the following calls for the <<cs independent>> field and evaluate the
result as a boolean true/false answer:

. isIndependent () if not found,)
Key "independent" column "independent"
getIndependent ()

If the answer is false, the section will not appear in the resulting document.

Unlike repeating content, the step into a conditional field does NOT change the context of the
data lookup. For example, in the following template snippet above, <<independentName>>
field is considered to be at the same “level” in the data as the <<cs independent>> field.
The sequence of calls would be (assuming a true result for the condition):

isIndependent () if not column
key "independent"
found, getIndependent() "independent"
. column
2. key "independentName" method getIndependentName () .
"independentName"

’ Conditional Sections (cs_) and Conditional Table Rows (cr_) use a matching end tag (es_)
D to define the end of the conditional region. Conditional columns (cc_) do not specify an
end tag and simply apply to the entire column.

Version 4.9 | October 2025 Page 55 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

5.2.8. Java Lookup Examples

Since Java lookups can be reasonably complex, the following table of examples can serve as a

useful reference. The table shows the template field on the left and the resulting calls into the

Java objects during document generation.

<<firstname>>
<<person.name>>

<<person.address.linel>>

<<people.size>>

<<firstname{renderer=x}>>

<<people[0] .name>>

<<rs_people>>

<<rr_ people>>

<<cs_result>>

<<cc_result>>

<<cs_{a.b<c.d}>>

<<name () >>

<<name (‘pl’)>>
<<name (‘pl’,’'p2’)>>
<<name (‘a_and b’)>>

<<name (‘a_and\ Db’)>>

getFirstname ()
getPerson () .getName ()
getPerson () .getAddress () .getLinel ()

getPeople () .getSize ()

getPeople () .length (if getPeople() returns an
array)

AN}

getFirstname () and then apply renderer “x”

getPeople () .get (0) .getName () (1f getPeople()
returns a Collection)

getPeople () [0] .getName () (1f getPeople ()
returns an array)

getPeople() (if Collection or array then loop
over all items)

getPeople () (if other Java object, it becomes
the “current” provider of data)

getResult () or isResult () and evaluate it as a
boolean

getA() .getB(), getC().getD() and evaluate
expression

name () (the brackets indicate the method is
explicitly named)

name (“pl”)
name (new String[]{“pl”,"p2”})
name (“a and b”)

name (“a_and b"”)

Version 4.9 | October 2025

Page 56 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

6. ADVANCED FEATURES

6.1. Using Field Renderers

Docmosis allows Field Renderers to be used by fields in a template. Renderers can make
variations to the final display of a field. A renderer can perform the following:

e setting or changing the text to be displayed in the document;
e setting font characteristics such as italics, bold and underlining;
e setting the table cell background colour if the field is inside a table cell.

Field renderers are referenced by name. The way they are attached to fields (as explained in
the Docmosis-Java Template Guide) is using the “renderer” qualifier.

The following example field associates a renderer called nameRenderer with the surname
field:

<<surname{renderer=nameRenderer}>>

In this example, the Docmosis engine will look for a renderer called nameRenderer and use it
to perform the final adjustments to the display of the surname field.

Docmosis can also apply renderers based on the type of data that's about to be displayed.
For example, if Docmosis knows the data is of type Date, then it will apply the renderer for
Dates if one has been registered.

The renderers are implemented in Java and implement the FieldRenderer interface.
Docmosis provides some built-in renderers and developers are free to add their own.
6.1.1. Using Built-In Field Renderers

Docmosis has three built-in renderers.

’ Date formatting and number formatting can also be achieved in the template by using
@ the built-in functions “dateFormat” and “numFormat”. (see the Docmosis-Java Template
Guide for more information.)

It is recommended to use the new functions where possible.

Version 4.9 | October 2025 Page 57 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE z

Automatically

Renderer Name . Description
Applied To

Formats date information into desired formats. The default date format is “dd MMM yyyy". This
renderer takes two optional parameters which are java.util.SimpleDateFormat compliant
format specifications. Where space characters are required in the format, underscore characters
should be used which will be replaced by spaces. Where underscores are required, the sequence “\
_"will leave the underscore in place.

As of version 3.2, the built-in date render can also be applied to String data. If a template field has a
date renderer applied and the data found by Docmosis is a String, it will attempt to parse the string
java.util.Date, into a Date instance according to a default set of formats. If successful, the render will be applied to

Date . the date as normal (otherwise an error results).
java.sqgl.Date

The default input date formats recognized are:

EEE MMM dd HH:mm:ss zzz yyyy,;vyyyy-MM-dd'T'HH:mm:ss'Z';dd MMM yyyy;dd-MMM-
yyyy;dd/MMM/yyyy;dd MMM yy;dd-MMM-yy;dd/MMM/yy

The property:
docmosis.renderer.extendedDateInputFormats

can be set to provide additional date formats that Docmosis will use to parse Strings into dates.
Multiple formats can be specified by delimiting with a ; character.

Boolean java.lang.Boolean, Formats boolean information into desired formats. Instead of being displayed as “true” and “false”,
java.lang.boolean boolean values can be displayed in a number of ways. The values can even be rendered in special
fonts. Please see the Docmosis-Java Template Guide for the detailed description of how to use this
renderer.

As of version 3.2, the built in boolean render can also be applied to String data. If a template field
has a boolean renderer applied and the data found by Docmosis is a String, it will attempt to parse
the string into a boolean instance according to a default set of formats. If successful, the render will

Version 4.9 | October 2025 Page 58 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE z

Automatically

Renderer Name Description

Applied To

be applied to the date as normal (otherwise an error results).
The default values for True are:
true;t;yrsyes;1;1.0
The property:
docmosis.renderer.extendedBooleanTrueValues
can be set to provide additional values that equate to true. Multiple formats can be specified by
delimiting with a ; character.
Formats field data into number formats recognized by Java's DecimalFormat class.

If the number renderer is attached to field data containing String data, Docmosis will attempt to
parse it as currency or other numeric data, which the renderer can then specify a different way to
present the value. See the Docmosis-java Template Guide for more information.

Number <none>

Docmosis knows the actual data types of data obtained from Java objects and from SQL queries so can apply renderers based on type without
having to name them in the template.

Examples of use of the built-in field renderers can be found in the Docmosis-Java Template Guide.

Version 4.9 | October 2025 Page 59 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

6.1.2. Building Your Own Field Renderers

Developers can build their own FieldRenderer implementations. Template fields can then
explicitly (by name) or implicitly (by data type) use the renderers.

How To Write A Renderer

To write a renderer, create a Java class that implements the FieldRenderer interface. This is
a simple task since there is a single method to implement:
public RenderedField render (FieldDetails fieldDetails, RenderedField

field) throws FieldRendererException;

Your implementation of render () must return a RenderedField instance. The
implementation can examine the details of the field being rendered from the given
FieldDetails instance and make decisions about what to alter. Alterations can be made to
the given RenderedField, which can then be returned at the end of the method.

There are two reasons that Docmosis passes a RenderedField instance to this method:

1. Effects can be compounded. Docmosis may make settings to renderers based on
instructions from the template. For example, if table row colours are being alternated,
Docmosis will pass this information through the renderer and the implementations can
choose to leave or override it.

2. Object creation can be minimized (for system performance). Docmosis does not create a
RenderedField instance per call to a field renderer saving in potentially very high
number of object creations.

As far as errors go, your renderer can throw a RuntimeException, or preferably, throw a

FieldRendererException with a meaningful error.

The following example defines a field renderer that obscures firstname and surname fields
so they won't be displayed in the final document:
public static class NameObscuringFieldRenderer implements FieldRenderer

{

public RenderedField render (FieldDetails fieldDetails,
RenderedField field)

throws FieldRendererException

if (fieldDetails.getFieldName () .equals ("surname")) {

Version 4.9 | October 2025 Page 60 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

// obscure surname fields
field.setValue ("XXXXSNXXX") ;
} else if (fieldDetails.getFieldName () .equals ("firstname")) {
// obscure firstname fields
field.setValue ("YYYYFNYYYY") ;
} else {
// leave the rendered field unchanged
}

return field;

}

Any field in the document with the name firstname or surname and with this renderer
attached will be obscured. Also, if this renderer was registered against the appropriate data
type (e.g. String.class), then it would be applied to all fields where the data fetched was
typed String.

The FieldDetails object provides lots of information about a field so that the renderer can
decide what to do. The following table describes each piece of information:

S e

Field name The name of the template field.

Row number Get the current row number (if inside a set of repeating
rows in a table).

Value class The class of the data item retrieved to populate this field
(null if the data found is not from Java reflection or an SQL
query).

Value object The actual value object of the data item retrieved (null if the

data found is not from Java objects or an SQL query).
Field value The String value of the data that has been retrieved.

Container class The class of the Java object on which the call was made to
get the value (null if not applicable).

Container object The object on which the call was made to obtain the value.

Renderer name The Name of the renderer from the template field (since
the same renderer can be used/registered under multiple
names if desired).

Renderer parameters The array of parameters that the template field is passing

Version 4.9 | October 2025 Page 61 of 74

d

DOCMOSIS-JAVA DEVELOPER REFERENCE

I N S

to the renderer (null if none).

Id (Obsolete) This is the value of the id qualifier that may be attached to
a field. This is obsolete now that renderers can take
parameters.

templateVariablesAccessor This class provides access to the template variables that are

active (eg <<$myvar=1>>) at the current point of
population. Template variables can also be set using this
member.

; Field Renderers must be written to be used safely by multiple threads, concurrently.
@ Typically, this means you should not create instance or class variables in your class;
instead make sure all variables are within the method.

Registering a Renderer

If you create your own renderer, you must register it with Docmosis to make it available to the
templates. Renderers can be registered for use across all documents generated, or on a
document by document basis.

To register a renderer for general use, use the setDefault* methods on the
RendererRegistry class:

I T

setDefaultRendererByName () Set the given Field Renderer instance to be used
by any field referencing it by name in any
template.

setDefaultRendererByClass () Set the given Field Renderer instance to be used

by any field where the data type retrieved to
populate the field is of the given class type. This
only applied to data from Java objects and SQL
queries where strict typing information is
available.

setDefaultRendererByClassAndName () Short cut method for registering by name and by
class.

Version 4.9 | October 2025 Page 62 of 74

d,

DOCMOSIS-JAVA DEVELOPER REFERENCE

To use a renderer as a one-off for a given document, use one of the setRenderer* methods
on the ConversionInstruction class. These are equivalent to the ones on the
RendererRegistry class, but they will override any default settings and will only apply to the
one document generation.

6.2. Java Reflection

As discussed, data can be sourced from Java objects as well as a variety of other sources of
data. Occasionally it can be challenging working out how to reference data in Java objects
from Docmosis templates. When things are going wrong, what can be done to figure out the
solution. This section provides some hints and useful information.

6.2.1. Parameterized Methods

To help reduce the complexity and need for creating new methods to suit data lookup driven
by templates, Docmosis allows templates to explicitly name methods to call on Java Objects.

By default, Docmosis will prefix the field name with “get” and capitalize the next letter to
attempt to find the relevant method. For example, a field <<name>> would be transcribed
into getName () when calling on a Java object. However, if the field name is suffixed by
brackets, e.g. <<name () >>, Docmosis will call a method name () on the Java object.

Going one step further, a method can have one or more string parameters passed to it from
the template. To specify a parameter to a method in the template it is placed in single-quotes
inside the brackets as follows: <<name ('initial') >>. This corresponds to a method which
takes a single String argument and would be called as follows:

object.name ("initial");

If more than one parameter is specified, such as <<name('initial','final’)>> then Docmosis
would call a method that takes a single String[] argument as follows:

object.name (new String[]{"initial","final"});

This allows a broad flexibility in terms of fetching template-controlled data from Java objects.

6.2.2. Debugging

Docmosis provides two mechanisms to assist with debugging data provision from Java
objects.

Version 4.9 | October 2025 Page 63 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

6.2.2.1. Logging Calls

If the logging level is set to debug or finer, then Docmosis will log a fair amount of detail as to
what it is doing. When reflecting, it will say what methods it is calling on what Java objects.
This set of logged calls can then be used to work out where Docmosis is trying to get its data.
Typically once that is known, the adjustment to the template is a reasonably intuitive
adjustment.

; Java will log to Log4 if it can be found in the classpath, otherwise it will log using Java’s
@ own logging facility. Discussions about logging configuration for these tools is outside
the scope of this manual.

6.2.2.2. Setting Unforgiving Mode

When adding Java objects to the data using DataProviderBuilder, it will check the
Docmosis property "docmosis.populator.lookup.java.forgiving"to see if lookups on
the added Java object should be treated as “forgiving” or not. Forgiving means that if the
template calls for a method to fetch some data, and the underlying object does not provide
the method then it will treat this as simply a no-data found and return nothing. If the
property is set to false, then lookups on Java objects for methods the object doesn't have will
be treated as an error and highlighted.

Docmosis defaults this “forgiving” behaviour to true. You can set it to false by either setting
the property in the docmosis.properties file or in the Java System properties.

Version 4.9 | October 2025 Page 64 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

7. DOCMOSIS PROPERTIES

7.1. Property Locations and Overriding

Any Docmosis property may be pushed into Java's System properties by your code using
System.setProperty (). Setting a property this way overrides any equivalent setting in the
properties file. Setting overriding Docmosis properties needs to be done before the call to the
Docmosis method SystemManager.initialise (). Many Docmosis properties are statically
loaded into the Docmosis classes, hence an application restart is required for changes to
properties to take effect.

Since System.setProperty () can have a scope broader than desired (for example multiple
applications in an application server, Docmosis also provides the Configuration class (as of
version 3.2). Configuration settings can be made and then passed to
SystemManager.initialise (Configuration config) to take effect.

The order of loading properties is done in the following order:

1. load defaults first

2. docmosis.properties (if available)

3. System properties (if set)

4. propertiesvia a Configuration instance

At each step, properties will override any settings in a previous step.

It is recommended that a Configuration instance be used, possibly in conjunction with a
docmosis.properties file to provide general settings across all deployments.

The Docmosis Configuration class provides convenience methods for getting started with
nominal configuration. The simplest way to create a configuration to get started is:

Configuration config = Configuration.standard()
.setKeyAndSite (key, site)

.setOpenOfficelLocation (ooLocation) ;

SystemManager.initialise (confiqg);

Version 4.9 | October 2025 Page 65 of 74

d,

DOCMOSIS-JAVA DEVELOPER REFERENCE

@ The converterPoolConfig.xml file is optional (and if used is expected to be found
in the class path). The Configuration class allows the converter pool to be configured
programmatically via the setConverterPoolConfiguration () method. Refer to
the Java APl documentation for more information.

7.2. Key Properties

The properties you will have to deal with when getting started, since these are mandatory and
have no default setting, are listed below:

® docmosis.key

® docmosis.site

® docmosis.openoffice.location

See section 3.3 Installing Docmosis (Core Engine) for descriptions on setting these variables.

An example property file can be downloaded from the Docmosis resources website
(https://resources.docmosis.com) under the Code Samples section. Below is an example of
the properties with the two must-address properties highlighted:

Example property file for Docmosis.

FHAHH AR H AR H AR

General Information

FHESHHHFE AR

By default, docmosis will look for this file (docmosis.properties) in
the root of class path entries.

Properties can alternatively be specified in Java System.properties
and any properties put into

System.properties will override values in this file.

#

Some properties are relevant to the Docmosis CORE (that is the main
engine) while others are relevant

to the Docmosis CONVERTERS. Each property below has comments

indicating to which part of Docmosis it applies.

Version 4.9 | October 2025 Page 66 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

In the case where you have multiple converters distributed around
different computers, you will probably

have multiple copies of this property file. You can choose to cut
those property files down to the bare

minimum for the converters or core as required. For example, only the
Docmosis core cares about the license

key, so only it's properties file needs to specify it.

FHEFHFH AR F AR S S

Must-set properties
FHEFHEH AR H AR AR HE

Specify the license key

(relevant only to the Docmosis Core)
#docmosis.key=

#docmosis.site=

Specify where to find the open office install

(relevant only to the Docmosis Converters)

Windows examples
#docmosis.openoffice.location=C:/Program Files/LibreOffice
Linux/Unix examples
#docmosis.openoffice.location=/opt/libreoffice

#MacOS

#docmosis.openoffice.location=/Applications/LibreOffice.app/Contents

E s s EE L EEEEEEEE
Optional common properties

igaddsasdssaasaaddiaaaiaad s

Version 4.9 | October 2025 Page 67 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

The location where the template store is to reside. The template
store should be thought of

as a cache. Templates that are placed into the store undergo
validation and optimisation

in preparation for fast document production. It can be rebuilt any
time so long as you

have your original templates still so they can be registered again.
See the documentation

for the StoreHelper and the DropStoreHelper. This may be blank and if
so, a temp location

will be used.

(relevant only to the Docmosis Core)

docmosis.template.store.location=./templatestore

A ; delimited list of source paths for templates. Set this to have
Docmosis automatically

monitor these locations for new and updated templates. New and
updated templates will be

loaded (registered) into the template store.
#docmosis.template.monitor.sourcepath=

Number of seconds between checking the various template sources for
changes. The default value

is 5 seconds. -1 means no watching directories and 0 (zero) means
just load once on startup.

(relevant only to the Docmosis Core)

#docmosis.template.monitor.period=5

This is the name of the resource to locate in the classpath which
defines the pool configuration

for the Docmosis converters. (relevant only to the Docmosis Core)
(relevant only to the Docmosis Core)

docmosis.document.converter.pool.config.resource=converterPoolConfig.xml

Version 4.9 | October 2025 Page 68 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

Control how to process a template error during population

If false, errors in the template processing will be rendered to the
resulting

document. If true, template errors will be fatal and document
production will abort

with an Exception being raised.

true is recommended for production and late testing, false for
development and early testing

(relevant only to the Docmosis Core)

#docmosis.populator.error.fatal=false

Control how to process a template error during analysis (when
registering a template into the store).

If false, errors in the template processing will be rendered to the
resulting

document. TIf true, template errors will be fatal and analysis will
fail with an error (causing the

registration with the template store to fail).

true is recommended for production and late testing, false for
development and early testing

(relevant only to the Docmosis Core)

#docmosis.analyzer.error.fatal=false

If you would like to do markup in plain text in your templates (rather
than using mergefields)

set these delimiters. Plain text markup and mergefield markup can be
used interchangeably, but

for any template, stick to one format since the consistency will help
you a lot.

Make sure you choose delimiters that won't appear in your text. You
will need to clear your

template store for changes to these settings to take effect.

(relevant only to the Docmosis Core)

Version 4.9 | October 2025 Page 69 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

docmosis.analyzer.field.plainText.prefix=<<

docmosis.analyzer.field.plainText.suffix=>>

Try these settings if you are having trouble using embedded converters
with JBoss.

useCustomLoader overrides loadIntoSystemCL so you must set
useCustomLoader=false (or comment it out)

if you want to try loadIntoSystemCL

(Relevant only to Docmosis Core)
#docmosis.openoffice.useCustomLoader=true

#docmosis.openoffice.libraries.loadIntoSystemCL=true

DOCX format is controlled by these properties.

DOCX format is only supported by Libre Office at this time (Open
Office 4 still only supports

MS 2003 xml format)

If you are using LibreOffice, then you can enable DocX support by un-
commenting the following line

(relevant to the Converters only)

#docmosis.converter.format.docx.internal.enabled=true

A good general DOCX option is to use the OpenSource odf-converter
(also packaged with odf-converter-integrator).

This will work for Open Office and Libre Office and might produce
better DOCX results than either.

(Relevant only to Docmosis Converters)
#docmosis.converter.format.docx.external.enabled=true

locate external converter executable

(Relevant only to Docmosis Converters)
#docmosis.converter.format.docx.external.path=c:/program files)/odf-

converter—-integrator/OdfConverter.exe

Version 4.9 | October 2025 Page 70 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

#docmosis.converter.format.docx.external.path=c:/program files
(x86) /odf-converter-integrator/0OdfConverter.exe

#docmosis.converter.format.docx.external .path=/usr/bin/OdfConverter

Allow html-like markup in data to be interpreted. This defaults to
false normally

to ensure data can be treated as plain text.

(relevant only to Docmosis core)

docmosis.populator.field.markup.process=true

7.3. Other Useful Properties

Several properties are listed below which may be of general interest. These properties can be
setin your docmosis.properties file to take effect.

In addition, a list of properties with specific notes for production environments is listed in
section 7.4 Properties for Production.

docmosis.populator.field.markup.process |fsetu)truatextdatarnaﬂ@up(suchas
for bold and <i> for italics) will take effect.

If set to false, textis assumed to be plain.

Can be overridden using the
DocumentProcessor.render (RenderReque

st)
docmosis.template.store.location Location of the Docmosis template working
area. If not specified, a temporary location will
be used.
docmosis.template.monitor.sourcepath A; separated list of paths to monitor for

templates. Docmosis will periodically examine
these locations for template changes and load
any new/changed templates.

docmosis.template.monitor.period The period in seconds at which the monitored
paths should be examined. Defaultis 5
seconds.

docmosis.renderer.extendedDateInputForma
ts

Version 4.9 | October 2025 Page 71 of 74

d

DOCMOSIS-JAVA DEVELOPER REFERENCE

docmosis.renderer.extendedBooleanTrueVal
ues

docmosis.analyzer.field.plainText.prefix The plain text markers used for identifying
fields in templates. They must be set for plain
text field mark up to be active.

docmosis.analyzer.field.plainText.suffix Defaults to <<

7.4. Properties for Production

By default, Docmosis will attempt to render errors into the resulting document. This makes
development and testing easier, but it is not likely that you would ever want such a document
reaching the end user in a production environment. It is more likely that if something goes
wrong, you would want Docmosis to throw an exception (ProcessingException) rather
than generate a document that has at least one error written into it. You can then handle the
error and apologize to the user that the document is not available.

There are two properties that control this behaviour, one for the analysis phase (when
templates are first registered) and one for the population phase (each time a template is used
to generate a document). It is suggested that the second property is set to true for
Production and late-testing environments:

Recommended for Recommended for
Property)
Dev/Test Production and Late Test
docmosis.analyzer.error.fatal false (default) false (default)
docmosis.populator.error.fatal false (default) True

See section 4.9 Error Handling for more detail.

Version 4.9 | October 2025 Page 72 of 74

DOCMOSIS-JAVA DEVELOPER REFERENCE

8. TROUBLESHOOTING

8.1. Getting Additional Support

The Docmosis website is your first point of call for help. There are forums, known issues and
other documentation online to help you solve problems.

If you are unable to resolve your problems or you have a request, you can contact the support
team at Docmosis.

support@docmosis.com

8.2. Known Issues

Please check the docmosis.com website for the latest on known issues and workarounds.

Version 4.9 | October 2025 Page 73 of 74

http://www.docmosis.com/
mailto:support@docmosis.com

Docmosis Pty Ltd

Address
Suite 8 / 5 Hasler Road,

Osborne Park,
WA 6017 Australia

Website
https://www.docmosis.com

Resources
https://resources.docmosis.com

d:, docmosis

https://resources.docmosis.com/
https://www.docmosis.com/

	1. Introduction
	1.1. Using this Guide
	1.1.1. Terminology and Conventions Used in this Document
	1.1.2. Related Reading

	2. Docmosis Overview
	2.1. System Description
	2.2. Templates and the Template Store
	2.2.1. Template Context
	2.2.2. Data Providers
	2.2.3. Converters
	2.2.4. Conversion Instructions

	3. Installing and Setting Up Docmosis
	3.1. Planning your Environment
	3.1.1. System Requirements
	3.1.2. Tasks

	3.2. Installing LibreOffice
	3.3. Installing Docmosis (Core Engine)
	3.3.1. Docmosis Configuration Properties
	3.3.2. Configuring the Converter Pool

	3.4. Installing Remote Converters
	3.4.1. Preparing Converters for Use
	3.4.2. Enabling SSL/TLS Communications to Remote Converters

	3.5. Adding Support for Barcodes
	3.6. Adding Support for QR Codes
	3.7. Adding Support for Processing of image meta data (EXIF)

	4. Generating Documents
	4.1. Initializing Docmosis
	4.2. Registering Templates
	4.2.1. Help with Template Registration
	4.2.2. Using Convenience Methods
	4.2.3. Registering Templates Automatically
	4.2.4. Using the DropStoreHelper Class
	4.2.5. Using the StoreHelper Class

	4.3. Referencing Templates
	4.4. Defining the Conversion Instructions
	4.5. Defining the Output Destination
	4.6. Preparing the Data
	4.6.1. Adding Simple Textual Data
	4.6.2. Adding Textual Data with HTML-like Mark-up
	4.6.3. Adding Structured Data Using Strings
	4.6.4. Adding XML Data
	4.6.5. Adding JSON Data
	4.6.6. Adding Image Data
	4.6.7. Adding Java Objects
	4.6.8. Adding Database Queries

	4.7. Generating the Document
	4.8. Closing Down Docmosis
	4.9. Error Handling
	4.9.1.1. Controlling Error Handling
	4.9.2. Recommended Configurations

	4.10. Other Features
	4.10.1. Setting Password Protection
	4.10.2. Using Watermarking
	4.10.3. Setting PDF Title and Initial View
	4.10.4. Enabling PDF Archive Mode
	4.10.5. Setting PDF Accessibility / Low Vision Mode

	5. Matching Data to Templates
	5.1. The Sources of Data
	5.1.1. String Data
	5.1.2. Java Objects as Data
	5.1.3. SQL Query Data

	5.2. Populating Data
	5.2.1. Using Simple Lookup Fields
	5.2.2. Using Nested Lookup Fields
	5.2.3. Indexed Lookup
	5.2.4. Using Image Data
	5.2.5. Using Repeating Sections and Repeating Table Rows
	5.2.6. Using Fields in Bullets or Numbered Lists
	5.2.7. Using Conditional Sections, Conditional Tables Rows & Columns
	5.2.8. Java Lookup Examples

	6. Advanced Features
	6.1. Using Field Renderers
	6.1.1. Using Built-In Field Renderers
	6.1.2. Building Your Own Field Renderers

	6.2. Java Reflection
	6.2.1. Parameterized Methods
	6.2.2. Debugging
	6.2.2.1. Logging Calls
	6.2.2.2. Setting Unforgiving Mode

	7. Docmosis Properties
	7.1. Property Locations and Overriding
	7.2. Key Properties
	7.3. Other Useful Properties
	7.4. Properties for Production

	8. Troubleshooting
	8.1. Getting Additional Support
	8.2. Known Issues

