
Docmosis-Java
Developer Reference
Version 4.7
Oct 2023

Docmosis-Java Developer Reference

Copyrights
© 2023 Docmosis Pty Ltd

This document and all human-readable contents of the Docmosis distribution are the
copyright of Docmosis Pty Ltd. You may not reproduce or distribute any of this
material without the written permission of Docmosis.

https://www.docmosis.com

The placeholder image provided in the Docmosis distribution is intended for use in
document templates and is not restricted by the terms above. You may use the image
for the creation of document templates and distribute it as required.

Trademarks
Microsoft Word and Microsoft Windows are registered trademarks of the Microsoft
Corporation.

http://office.microsoft.com/en-us/default.aspx

http://www.microsoft.com/windows/

Adobe® PDF is a trademark of the Adobe Corporation.

http://www.adobe.com/products/acrobat/adobepdf.html

LibreOffice Writer is a trademark of LibreOffice contributors and/or their affiliates

http://www.libreoffice.org

Docmosis-Java Developer Reference
Version 4.7

Page ii Oct 2023

Table of Contents
1 Introduction..6
1.1 Using this Guide..6

1.1.1 Terminology and Conventions Used in this Document..6
1.1.2 Related Reading...7

2 Docmosis Overview..8
2.1 System Description...8

2.2 Templates and the Template Store..9
2.2.1 Template Context..11
2.2.2 Data Providers...11
2.2.3 Converters..11
2.2.4 Conversion Instructions...14
2.2.5 Template Links and Security..14

3 Installing and Setting Up Docmosis..15
3.1 Planning your Environment..15

3.1.1 System Requirements...15
3.1.2 Tasks...16

3.2 Installing LibreOffice..17

3.3 Installing Docmosis (Core Engine)..17
3.3.1 Docmosis Configuration Properties..18
3.3.2 Configuring the Converter Pool...19

3.4 Installing Remote Converters...20
3.4.1 Preparing Converters for Use..21
3.4.2 Enabling SSL/TLS Communications to Remote Converters..21

3.5 Adding Support for Barcodes..22

4 Generating Documents..23
4.1 Initializing Docmosis..23

4.2 Registering Templates...24
4.2.1 Help with Template Registration...24
4.2.2 Using Convenience Methods...24
4.2.3 Registering Templates Automatically..25
4.2.4 Using the DropStoreHelper Class..25
4.2.5 Using the StoreHelper Class..26

4.3 Referencing Templates..26

Docmosis-Java Developer Reference
Version 4.7

Page iii Oct 2023

4.4 Defining the Conversion Instructions..27

4.5 Defining the Output Destination..28

4.6 Preparing the Data...28
4.6.1 Adding Simple Textual Data...28
4.6.2 Adding Textual Data with HTML-like Mark-up...29
4.6.3 Adding Structured Data Using Strings..30
4.6.4 Adding XML Data...31
4.6.5 Adding JSON Data..31
4.6.6 Adding Image Data..32
4.6.7 Adding Java Objects..32
4.6.8 Adding Database Queries..33

4.7 Generating the Document...36

4.8 Closing Down Docmosis...36

4.9 Error Handling...36
4.9.1 Controlling Error Handling...36
4.9.2 Recommended Configurations..37

4.10 Other Features..38
4.10.1 Setting Password Protection..38
4.10.2 Using Watermarking...38
4.10.3 Setting PDF Title and Initial View...39
4.10.4 Enabling PDF Archive Mode PDF/A-1a..39
4.10.5 Setting PDF Accessibility / Low Vision Mode..39

5 Matching Data to Templates...40
5.1 The Sources of Data...40

5.1.1 String Data...40
5.1.2 Java Objects as Data..41
5.1.3 SQL Query Data...41

5.2 Populating Data..42
5.2.1 Using Simple Lookup Fields...42
5.2.2 Using Nested Lookup Fields...43
5.2.3 Indexed Lookup...44
5.2.4 Using Image Data..45
5.2.5 Using Repeating Sections and Repeating Table Rows..45
5.2.6 Using Fields in Bullets or Numbered Lists..49
5.2.7 Using Conditional Sections, Conditional Tables Rows & Columns............................50
5.2.8 Java Lookup Examples..51

6 Advanced Features...53
6.1 Using Field Renderers..53

Docmosis-Java Developer Reference
Version 4.7

Page iv Oct 2023

6.1.1 Using Built-In Field Renderers...53
6.1.2 Building Your Own Field Renderers..56

6.2 Java Reflection...58
6.2.1 Parameterized Methods...59
6.2.2 Debugging..59

7 Docmosis Properties..61
7.1 Property Locations and Overriding..61

7.2 Key Properties...62

7.3 Other Useful Properties...66

7.4 Properties for Production..67

8 Troubleshooting...68
8.1 Getting Additional Support...68

8.2 Known Issues.. 68

Docmosis-Java Developer Reference
Version 4.7

Page v Oct 2023

1 Introduction

Welcome to the Docmosis-Java Developer Reference. This manual is intended for software
developers who wish to provide document generation as part of their own applications. It
provides information that will enable the integration of Docmosis-Java in to your Java
application.

1.1 Using this Guide

1.1.1 Terminology and Conventions Used in this Document
The following terminology is used in this document.

Term Definition

Template
A normal Microsoft Word or LibreOffice Writer document
containing special Docmosis fields.

Fields / Placeholders
Docmosis specific mark-up within the template, that controls the
insertion and removal of data and content.

Render
The process of merging data with a template to generate a
document.

Template store
The location where registered templates reside. Only templates
that have been registered can be rendered into documents.

Data provider
An object or set of objects, supplied at the time of rendering a
document, that contain the combined sources of information for
populating into a template.

Conversion instruction
An ‘instruction’ about what to do when rendering a document
including information about output formats, compression flags
and object naming.

Converter

A separable component of Docmosis that renders the document
into its final format. Converters may be distributed across
multiple computers and may be organized into groups. This
component is processor intensive and is the component that
relies on LibreOffice.

Converter pool

The pool of converters available to Docmosis. The pool is fault
tolerant and distributable; and provides an arbitrary grouping
mechanism so that different groups of converters may be used
for different tasks.

Docmosis-Java Developer Reference
Version 4.6

Page 6 April 2020

This document uses the following typographical conventions to highlight significant
parts of the text to distinguish it from normal text.

Text that looks like this… Means this…

<<fieldname>> A field in the document template that will be replaced with data.

docmosis.###
A code instruction: either an individual line, or part of a complete
module.

...

An indicator to signify that the preceding sequence of code
instructions will execute incrementally until there is no more data
in the data provider.

template.doc A file name, a file extension or a web site address.

1.1.2 Related Reading
Refer to the Docmosis-Java Template Guide for information about creating the templates
for use with your data.

Docmosis-Java Developer Reference
Version 4.7

Page 7 Oct 2023

2 Docmosis Overview

This chapter provides an overview of the functionality of Docmosis and the basic workflows
involved in generating documents.

In simplest terms, the main purpose of Docmosis is to merge data from an application with a
template to generate documents.

With Docmosis, the layout and design of a template can be a separate process from the
development of the application. Anyone with knowledge of either Microsoft Word or
LibreOffice Writer can create and maintain the templates, thereby allowing non-developers to
contribute to the decisions and execution of how the finished documents will look.

From a developer’s perspective, the basic process to generate a document is:

1. Specify the template to use.

2. Specify the data.

3. Specify any special instructions.

4. Specify the destination stream for the output.

5. Invoke the render method.

2.1 System Description

Docmosis-Java is a Java library that integrates with your own Java applications, Web
applications or J2EE applications. It comprises a core engine and one or more converters,
depending on your system’s requirements.

Docmosis-Java Developer Reference
Version 4.7

Page 8 Oct 2023

The docmosisX.X.X.jar contains the code for the core and converters. The JAR file can be
added as a library to your Java application to access the Docmosis core. It is also contains the
code to run a Docmosis “converter”. The one JAR file does both jobs.

The Docmosis core is embedded into your Java application, and is the only part of Docmosis
with which your application will interact directly. The converters can be installed on any host
machine on the network, and are independent processes with which the Docmosis core
interacts. Docmosis offloads the bulk of the effort in the rendering process to the converters.

Docmosis is generally used by a “server-side” system. It has been built with scalability in mind
to allow the servicing of many clients. Docmosis automatically manages queuing requests so
that under heavy concurrent loads, the documents requested will be generated as soon as
the required resources are available. The rate of document generation is determined by
many factors, but in typical environments Docmosis can be expected to generate hundreds of
documents per minute if required.

The major elements of Docmosis with which developers will interact are templates, data
providers and the document processor. The document processor brings together all of the
components to perform the document generation.

Docmosis uses an installation of LibreOffice during the document generation process,
specifically during the conversion stage. This means that converters must have visibility to a
LibreOffice installation.

2.2 Templates and the Template Store

Templates define the layout and formatting of the generated documents. Templates contain
the special Docmosis fields into which Docmosis will insert the data supplied by the data
providers.

Docmosis-Java Developer Reference
Version 4.7

Page 9 Oct 2023

Docmosis Templates may be developed using Microsoft Word or LibreOffice Writer.
Templates are not templates in the usual sense for these applications, since Docmosis can
use any document as a template. If the document contains fields, then Docmosis works with
those fields during document generation. For detailed information about developing
templates, please refer to the Docmosis-Java Template Guide.

To make the performance of document generation as high as possible, Docmosis performs a
one-off analysis and optimization of each of the original templates. This process is known as
registration. The registration process creates an optimized copy of the template in a location
called the “template store”, ready to be rendered into documents. The location of the
template store is defined in the configuration properties (see section 3.3.1 Docmosis
Configuration Properties).

The template store should be thought of as a cache of the optimized templates that are now
ready for use. If your template is not registered, then it will not be in the template store, and
it can’t be used to generate a document. Updated templates will not take effect until they are
re-registered. Docmosis provides several mechanisms to make template registration easy
(see section 4.2 Registering Templates).

The Docmosis core is the only part of the document generation system that interacts with the
template store. As a result, the template store needs to be accessible only by the Docmosis
core. Converters running on remote servers do not need to have access to the template
store.

Docmosis-Java Developer Reference
Version 4.7

Page 10 Oct 2023

Docmosis provides an in-memory cache over a file-based template store. This provides a
performance-oriented source of templates.

It is important to think of the template store as a cache. It can be deleted as required, but
until templates are re-registered, they will not be able to be rendered. If your system is not
performance demanding then you generally won’t even need to concern yourself with the
store. Simply use the methods in the DocumentProcessor class that auto-registers
templates on your behalf.

2.2.1 Template Context
Templates are stored in the template cache using a name and a context. A template’s
name is any string you wish to use to label the template and is typically based on the file
name of your original template. The template context is simply a “path-type” construct
allowing templates to be organized into areas/directories/folders. Typically, the context
will be based on the location of the original template in a file system.

When the template set is small or contexts are not required, templates may be
identified by the name only, and will be stored in the root of the template store.

2.2.2 Data Providers
During document generation, the containing application passes a DataProvider to
Docmosis, which provides the data for the document. The captured data can include
any combination of strings, boolean values, images, lists, arrays of Java objects, Java
object hierarchies, database query results and name/value key pairs.

Typically, developers will not need to concern themselves with the different
implementations of data provider that Docmosis uses. The DataProviderBuilder
class provides a simple way for collecting your data together.

During a document generation, many calls will be made to the DataProvider to fetch
data. As a result, document generation performance is directly related to the complexity
and performance of the operations using the methods in this interface. Should you wish
to build your own custom implementations of the Data Provider interface, you should
keep this in mind.

2.2.3 Converters
A converter is the component of Docmosis that performs the rendering of the
documents into the desired formats according to the conversion instructions. In a
simple setup, the converters might be installed on the same machine as that with the
application using Docmosis.

The following diagram illustrates a simple configuration that uses two converters on the
same machine as the application.

Docmosis-Java Developer Reference
Version 4.7

Page 11 Oct 2023

The number of converters you can run is determined by the edition of Docmosis
you are running. The first number in the edition tells you the maximum number
of converters you can run. A D-N00 can run ‘N’ converters. For example: a D-400
can run 4 converters.

The Trial Key allows for a maximum of 3 converters.

Converters consume a large proportion of Docmosis’ processing requirements and to
help improve the performance of the conversion process, you can install converters on
distributed servers on a network. Converters can run on any computer to which the
main application has a network connection during the document generation process.

The following diagram shows a simple but distributed configuration where the
processing load has been moved away from the main server.

Docmosis also supports the sharing of converters. This enables you to run several
applications, each with their own Docmosis core, and use the same converters. This
configuration is ideal for development and testing environments where a small number
of converters may be set up and used by many developers. The following diagram
illustrates this configuration.

Docmosis-Java Developer Reference
Version 4.7

Page 12 Oct 2023

For production or performance-oriented testing, sharing converters is discouraged as it
may result in inconsistent performance (two renders may queue up on a single
converter rather than auto-balancing). Docmosis typically assumes it has sole use of
the converters in its pool so will load balance optimally if this is correct.

In the Docmosis-Java Enterprise edition, converters can also be configured into groups
that have specific conversion tasks or performance requirements. If necessary, jobs will
wait until a converter from the designated group is available to complete the task. This
allows, for example, batch systems to be configured separately from online/
transactional systems. When a document render is executed, the instruction can
specify which group to use and Docmosis will take care of locating a converter from the
specified group. The following diagram illustrates such a configuration.

Docmosis-Java Developer Reference
Version 4.7

Page 13 Oct 2023

2.2.4 Conversion Instructions
Conversion instructions provide specific information to a converter about the document
generation process. These instructions include such information as:

 the desired output formats

 data compression

 the output file names (this is used to name the files within a zip archive)

 the converter group to use (this is used for systems configured with multiple
groups of converters).

When Docmosis generates documents in several formats, the output files are stored in
a compressed package using the ‘zip’ format. The resulting zip file is streamed to the
specified output destination. You can also specify that Docmosis should store single
output files in a compressed package.

The DocumentProcessor class provides simplified methods that do not take
conversion instructions. These methods make rendering easier by making assumptions
about the output format etc. based on other given parameters.

2.2.5 Template Links and Security
Depending on the source of templates, there could be concerns regarding intentional or
accidental inclusion of links to external items (files or web sites). These can be attached
to embedded OLE objects for example. The document generation process could
activate these links and cause undesirable actions:

 leaking information about the document generation system (IP address,
presence of files)

 Including data / information from remote locations

Docmosis has the ability to block or selectively allow this functionality for templates
using ExternalResourcePermissions. The permissions define what to do when working
with a template which contains external references.

By default, the property:

docmosis.analyzer.preprocessor.externalResource.permission.default

is used to determine what the permissions should be. When a template is stored it is
checked and evaluated against the permissions. The API allows this to be overridden
with “ALL”, “NONE” or a white-list of allowable references.

The current default is ALL and can be changed by setting the property above to NONE
or calling the API with specific permissions.

Typically, there are few cases where such links in templates are required, so setting the
default to NONE and correcting templates that are not valid is a good approach to
security.

Docmosis-Java Developer Reference
Version 4.7

Page 14 Oct 2023

3 Installing and Setting Up Docmosis

As stated earlier, Docmosis is primarily intended for use in a server-side environment, but it is
not limited to this. You can incorporate Docmosis into any system that you choose to develop,
including end-user or client-side applications. However, Docmosis is best suited to a server-
side environment, where you can take advantage of its performance characteristics.

Before you incorporate Docmosis into your system, you should identify the type of
configuration your system will require. When you have completed your planning, you can
perform the tasks necessary to deploy and use Docmosis. The following activities are
necessary to prepare Docmosis for use:

 installing and configuring Docmosis

 integrating Docmosis into your application

 preparing and registering the templates

 setting up the additional components.

3.1 Planning your Environment

The first consideration is the intended distribution of the Docmosis components: all on one
host machine, or distributed among several machines. The Docmosis converters can be
deployed onto any number of hosts that satisfy the minimum requirements discussed in the
following section. Distributing the installed components improves the overall efficiency of the
system by sharing the load among the host machines.

You can easily install and decommission converters as required, and simply change the
configuration to match the changes, so starting simple is often the best option.

3.1.1 System Requirements

This section identifies the system requirements for any machine that runs an
application in which Docmosis is embedded and any machine that runs a Docmosis
converter. Make sure that the following items are installed before trying to use
Docmosis.

Docmosis Core

The minimum requirements for the Docmosis core are:

 Java Version 6 or later.

 The docmosis.jar library included in your application

 The docmosis.properties file, unless using the Configuration class to
programmatically configure Docmosis

Docmosis-Java Developer Reference
Version 4.7

Page 15 Oct 2023

 An appropriate license key for your environment

 A converterPoolConfig.xml file

 Optionally the barcode4j library and zxing library on the classpath if you
would like Docomsis to generate barcodes/qr-codes

Docmosis Converters

The minimum requirements for distributed converters are:

 Version 1.6 or later of Java. Version 8 or later if using LibreOffice 7 or later.
You must make sure that you are using 32 bit Java is using a 32 bit
LibreOffice. Likewise for 64 bit.

 LibreOffice 6 or later (see section below Installing LibreOffice)

 the docmosis.jar library

 the docmosis.properties file if using standalone converters
(programmatic configuration does not apply to standalone converters)

 an active network connection with the application using the Docmosis core.

The above configuration is required on every machine on which a converter is
installed.

3.1.2 Tasks
The following list describes additional recommended tasks that should be considered
when planning your installation:

 Identify the computer where the main engine is required. This will often be
where an existing application is running that will make use of Docmosis.

 If it’s appropriate, identify the computers that will be used to host the distributed
converters.

 Confirm the network installation and connectivity of all machines that will be
involved in document generation.

 Confirm the installation and operation of the software identified in the
preceding system requirements section.

 Configure the Java classpath of your application to include the path to the
docmosis.jar, docmosis.properties and converterPoolConfig.xml
files.

 Create boot-time scripts or start-up services to run your converters whenever
the host is restarted. This may be managed in alternate ways, depending on
your system configuration.

Docmosis-Java Developer Reference
Version 4.7

Page 16 Oct 2023

3.2 Installing LibreOffice

LibreOffice Writer is the word processing application in the LibreOffice suite. It can be freely
downloaded from:

http://www.libreoffice.org

 This section is included because LibreOffice Writer forms an integral part of the document
generation process. This section does not include general information about installing and
using Writer as a desktop application. Refer to the online help resources provided by
LibreOffice for further details.

To use Docmosis you must install LibreOffice on the machines nominated to host the
Docmosis converters. Only one installation of LibreOffice is required for any number of
converters on the same machine.

All the procedures in this chapter assume that you understand the techniques required for
the particular word processor and that you have a document open in the word processor
on which you can perform the procedure.

In addition, the procedures use menu-based instructions for consistency.

Docmosis requires no specific configuration settings for LibreOffice and you don’t need to
register your installation. However you should note the following points in this section to
ensure that you get the best performance from Docmosis.

 Make sure automatic updates are not enabled (on Linux systems, some
packages will auto-install updates and this is typically a risky business).

 Install consistent software versions onto all the servers.

XServer and Virtual Frame Buffer
When installing and running Docmosis and LibreOffice, there is no requirement to run either
an XServer or a Virtual Frame Buffer (e.g. xvfb).

On Linux platforms, you must ensure that a number of X libraries are installed to enable
LibreOffice to operate correctly.

If you have any trouble launching Docmosis converters on any platform, this is typically an
issue with the LibreOffice installation. Please refer to the FAQ online for the latest issues
and solutions when diagnosing issues.

3.3 Installing Docmosis (Core Engine)

Installing Docmosis into an application is simply about adding Docmosis libraries and
configuration to your existing or new application. If you are using converters on the same
server, you will also set up the converters at the same time. If you are using distributed
converters (converters that run separate processes from your application (possibly on a
remote host), please also refer to Installing Remote Converters on page xx.

Docmosis-Java Developer Reference
Version 4.7

Page 17 Oct 2023

http://www.libreoffice.org/

Installing Docmosis itself is a matter of ensuring the docmosis.jar and required configuration
files are visible to the application in which you are using Docmosis. Note that most
configuration can be done programmatically using the Configuration class, in which case only
the docmosis.jar file is required.

Typically, this means making sure that the following files are visible in your Java classpath:

 docmosis.jar

This file contains the Docmosis libraries

 docmosis.properties

This file contains settings required by Docmosis in general. This file can be removed if
your code launches Docmosis with the Configuration class (available since version 3.3)

 converterPoolConfig.xml

This file defines the locations of the converters that are available to the Docmosis core
engine. This file is also optional if using the Configuration class.

3.3.1 Docmosis Configuration Properties
In Docmosis, there are several properties that you can configure to get the best out of
your system. The default docmosis.properties file contains common properties that
can be configured. The one distributed docmosis.properties file contains settings
relevant to both converters and the core. Each property is preceded with a comment
indicating the use of the property and which part of Docmosis the property affects.

The Docmosis properties can also be provided via code instead using the Configuration
class (available since version 3.3). In this case, the docmosis.properties file is not
necessary. This is an example of using the Configuration class:

Configuration dmConfig = Configuration.standard()

 .setKeyAndSite("XXX-XXX-XXX-XXX-XXX-","XXX XXX")

 .setOpenOfficeLocation(“C:/Program Files/LibreOffice”);

SystemManager.initialise(dmConfig);

In general, you can use the default properties provided with the Docmosis distribution.
You will only need to set the value for the license and the location of the LibreOffice
installation.

Docmosis-Java Developer Reference
Version 4.7

Page 18 Oct 2023

Docmosis properties can also be set via Java’s System properties, though this is
not recommended for application servers (since it makes the settings global to all
applications in the application server). The load order for Docmosis properties is:

Load from docmosis.properties file

Load from System properties

Load from Configuration object

Properties are loaded (if available) at each stage overwriting any settings from a
previous stage.

The docmosis.properties file is searched for in the root of any entry of the
Java Class Path. You may need to add an entry to the Java Class path for the
location of the docmosis.properties file, if you are using one.

3.3.2 Configuring the Converter Pool
All of the converters available to Docmosis belong to the converter pool. They are
identified in the converterPoolConfig.xml file or using the
Configuration.setConverterPool() method. The converter pool allows
configuration of standalone converters and groups of converters. By default, the
Configuration class configures a single converter to be launched automatically
(embedded).

If using a converterPoolConfiguration file, the configuration will reflect what is
specified in the configuration file.

The number of converters you can run is determined by the edition of Docmosis
you are running. The first number in the edition tells you the maximum number
of converters you can run. A D-N00 can run ‘N’ converters. For example: a D-400
can run 4 converters.

Embedded converters are convenient in that they do not need to be started
separately – the Docmosis core engine will start them and shut them down
automatically. The disadvantages, however, include:

 they must run in the same VM as the core engine

 the load cannot be distributed to other hosts around the network

 some web or application servers will not allow the required processes to
be automatically launched

 they cannot be taken offline or started up as required without restarting
the core engine.

Docmosis-Java Developer Reference
Version 4.7

Page 19 Oct 2023

There are several elements contained in the converter pool configuration file:

 The converter-pool element can contain one or more group elements. It also
has two attributes:

o officeConverterClass specifies the Java class used for a converter.

o defaultGroup identifies which of the groups defined in the pool
configuration is the default group. If no group is specified in the
ConversionInstruction when rendering a document, Docmosis
invokes a converter from the default group.

 The group element contains one or more instance elements. It also has two
attributes:

o name is the name of the group. It must be unique in any one
configuration file.

o description is a plain language phrase that describes the group, its
purpose and the nature of the support that it provides for conversion.

 The instance element is an empty element with two attributes:

o hostname identifies the name of the computer on which the converter is
installed. An IP Address may be specified instead of a host name.

o port identifies the particular port on which an instance is listening. Your
choice of ports is arbitrary and should be selected to be compliant with
your existing environment. The ports chosen will need to match the
ports used when launching the remote converters from a start-up script.

o sslProtocol optionally specifies that encryption should be applied to
the connection. The protocols available are determined by the Java you
are using. Typical examples are “SSL”, “TLS”, "TLSv1".

o sslTrustStore optionally specifies the path to the “trust store” which
provides certificates used for encryption.

o sslTrustStorePw optionally specifies a password to use to read the
trust store. A password is typically not needed to read the certificates
from the store.

3.4 Installing Remote Converters

This section provides details of the installation for converters. If you intend to run converters
on the same machine as the Docmosis core engine, you can ignore this section. Refer to the
note above for the disadvantages of using embedded converters.

To install a converter, make sure that the host you are working with satisfies the minimum
requirements (see section 3.1 Planning your Environment).

Docmosis-Java Developer Reference
Version 4.7

Page 20 Oct 2023

You can install additional converters at any time by changing the converter pool
configuration and starting additional converters. This facility is controlled by your
existing Docmosis license.

3.4.1 Preparing Converters for Use
Distributed converters are designed to run continuously and listen on specific ports for
a connection from the Docmosis core requesting a conversion. To launch a converter
manually, you can run a script as required or you can launch the converters during host
computer’s start-up sequence.

You will need:

1. the docmosis.jar file

2. a docmosis.properties file

3. a launch script or wrapper suitable to your operating system that will be used to
launch the converters (at boot time also).

If you are using SSL/TLS to encrypt the socket communication, you will need to launch
the converters with the appropriate security.

3.4.2 Enabling SSL/TLS Communications to Remote Converters
To secure the communications to the remote converters, both the core and the
converter need to be security enabled. The remote converter can specify this on the
command line at startup:

usage: java com.docmosis.document.converter.RemoteConverter
<-h>

usage: java com.docmosis.document.converter.RemoteConverter
<port> [ssl=alg]

usage: java com.docmosis.document.converter.RemoteConverter
<exe> <converterClass> <port> [ssl=alg]

 -h : print this usage

 <no args> : run the converter on port 2100

 port : run the converter on the given port

 port ssl=protocol : run the converter on the given port
and enable SSL with specified protocol

 exe converterClass port : set the executable, converter
class and port to use

 exe converterClass port ssl=protocol : set the executable,
converter class and port to use and enable SSL with specified
protocol

Docmosis-Java Developer Reference
Version 4.7

Page 21 Oct 2023

The protocols available are determined by the version of Java you are using.

Please visit the Docmosis.com website to get more information and example files in the
Resources section.

Developing and initiating system-level features will require the appropriate
system access privileges and the detail of implementing them is beyond the scope
of this document.

3.5 Adding Support for Barcodes

When the Barcode4J (http://barcode4j.sourceforge.net/index.html) library is
present, Docmosis can generate the following barcode formats:

 Code39 (“code39”)

 Code128 (“code128”)

 ITF14 (“itf14”)

Docmosis requires only barcode4j.jar to be added to the class path.

For more information about creating barcodes, please refer to the Docmosis-Java Template
Guide.

Docmosis-Java Developer Reference
Version 4.7

Page 22 Oct 2023

http://barcode4j.sourceforge.net/index.html

4 Generating Documents

The main function of Docmosis is to process data provided by an application and merge it
with a template to generate formatted documents (also known as “the fun part”). The
DocumentProcessor class drives document generation. It contains the render methods that
pull the templates and data together to generate the documents.

In general, the steps for the generation of the documents are:

1. Initialise Docmosis (this is a one-off action).

2. Register any new or updated templates (this is one-off or as required),

3. Identify a template in the template store.

4. Define the conversion instructions.

5. Define the output destination.

6. Prepare the data.

7. Call the document processor’s render method.

8. Close down Docmosis (this is a one-off action).

These steps are described in more detail throughout this section.

4.1 Initializing Docmosis

When your application starts (or is ready to begin using Docmosis) it will need to use the
following code to enable Docmosis to start its own processes for document generation.

SystemManager.initialise();

Initialising performs many tasks, and one key task is to establish connections to the various
converters that have been configured. Almost all tasks Docmosis performs are dependent on
at least one converter being online. The startup can take quite a long time which means your
application should initialise Docmosis once (eg at startup) and leave it running until your
application shuts down. At shutdown, call SystemManager.release() to stop Docmosis
and it will release the resources it is using.

Once Docmosis is initialised, the typical next step is to register a set of templates (or update
the current set of registered templates). Refer to section 4.2 Registering Templates for the
various ways in which templates can be registered.

With a set of pre-optimized templates ready for use, Docmosis can be tasked with getting
down to the business of generating documents.

Docmosis-Java Developer Reference
Version 4.7

Page 23 Oct 2023

4.2 Registering Templates

In Docmosis, all templates are registered into a facility called the template store. Templates
must be registered in the store before they can be used for a document generation. The
location of the template store is typically specified in docmosis.properties.

The template store is a cache of templates that have been pre-analysed and optimized to
make the rendering of each document as fast as possible.

4.2.1 Help with Template Registration
Docmosis has several features to help with template registration:

1. Convenience methods

2. Auto Registration Monitor

3. The DropStoreHelper class

4. The StoreHelper class

These provide a very flexible set of tools allowing the developer to work anywhere
between managing the template store directly to setting some properties and allowing
Docmosis to take care of the rest. The following sections detail each of these options.

See also the online API documentation at http://www.docmosis.com.

Template Registration is not currently thread safe when updating a template.
Two processes should not attempt to register the same template at the same
time. If a template is being used (for rendering documents) when an update to
that template is attempted, the update will fail and you will need to try again.

4.2.2 Using Convenience Methods
Convenience methods in the DocumentProcessor class will automatically register a
template as required (i.e. if it is new or modified). There is a small cost in examining the
template to see if it is new or modified, however, unless your system must be geared
for optimal performance, this overhead is small.

The following methods will automatically register the given template as required, before
rendering the document:

public static void renderDoc(File template, File outputFile,
DataProvider dp)

public static void renderDoc(File template, OutputStream
outputStream, ConversionFormat format, DataProvider dp)

Docmosis-Java Developer Reference
Version 4.7

Page 24 Oct 2023

http://www.docmosis.com/

4.2.3 Registering Templates Automatically
There are two properties that may be configured to enable Docmosis to monitor a set
of directories or JAR archives for templates automatically. This means that templates
can be registered and updated without having to write any code. The properties are:

docmosis.template.monitor.sourcepath

docmosis.template.monitor.period

docmosis.template.monitor.context

The sourcepath property is a semi-colon (;) delimited list of directories or Jar archives
to watch for changes. This property should be used to point to directories and archives
containing only templates since all files are scanned and evaluated for suitability as
templates. This will waste resources if other files are present.

The period property is used to control the frequency of checking for template changes.
The following settings apply:

Value Result

>0
Check every <value> seconds all templates in areas specified by the
path and load in any new or changed templates.

0
Load all templates from the path once when
SystemManager.initialise() is called.

-1 Disable automatic loading.

The context is an optional property which causes templates to be loaded into a
TemplateContext (path) specified, rather than the root context.

4.2.4 Using the DropStoreHelper Class
The DropStoreHelper class provides methods to register whole directories or Jar
archives of templates recursively.

When registering templates the DropStoreHelper infers:

 the context from the directory names in the file-system path of the source
templates,;

 the template name from the filename.

The DropStoreHelper processing of directories and archives works as follows:

 traverses the directory structure below the specified location;

 recognizes all documents that are potential Docmosis templates;

 creates contexts in the template store that reflect the directory structure of the
source templates;

 registers new templates;

 re-registers updated templates.

Docmosis-Java Developer Reference
Version 4.7

Page 25 Oct 2023

The following code shows how simple the DropStoreHelper class is to use:

DropStoreHelper helper = new
DropStoreHelper(TemplateStoreFactory.getStore());

File dir = new File("/dm-templates/deploy");

helper.process(dir);

4.2.5 Using the StoreHelper Class
The StoreHelper class is the "lowest level" class for registering templates into the
store. It provides specific methods to load a template into the store and name the
template within the store as desired.

The following example uses the StoreHelper class to perform the registration of a
template (Referral.odt) into the template store under a context called medical and
with the name Referral.

TemplateStore store = TemplateStoreFactory.getStore();

TemplateContext context = new TemplateContext("medical");

TemplateIdentifier templateId = new
TemplateIdentifier("Referral", context);

StoreHelper.storeTemplate(templateId, new
File("Referral.odt"), true, store);

4.3 Referencing Templates

When rendering a document, Docmosis needs to reference the appropriate template for the
process. To refer to a registered template you specify it by using a TemplateIdentifier
instance. The following snippet shows how you might reference a template called “Referral”:

TemplateIdentifier templateId = new
TemplateIdentifier("Referral");

If you have a large number of templates, or you simply have them organized into hierarchies,
then you will need to specify the context of the template. The following example references
the “Referral” template in the “medical/client” context:

TemplateIdentifier templateId = new TemplateIdentifier("Referral",
("medical/client");

If you use the DropStoreHelper class or the Auto Registration process to load directories of
templates into the template store, then it is likely you already have templates in various
contexts matching the directory structure of the original templates.

To find out what templates are registered in the store, the following code can be used:

Docmosis-Java Developer Reference
Version 4.7

Page 26 Oct 2023

TemplateContext rootContext = new TemplateContext(“.”);

TemplateDetails[] templates =
TemplateStoreFactory.getStore().findByContext(

 rootContext, true);

for(int i=0; i<templates.length;i++) {

 System.out.println(i + "context=" +
templates[i].getContext().getPath()

 + " name=" + templates[i].getName());

}

It will produce a list of the registered templates, including the context and the name. This
shows precisely how any of the templates in the template store can be referenced; by creating
a TemplateIdentifier with the given name and context.

The TemplateDetails class is a subclass of TemplateIdentifier and simply provides more
information about the template (such as size, modification date etc) than the pure location.

Another way to find the context of your templates, look into the configured
template store (by default a directory called “templatestore” in the location
your application runs) to see what the structure is.

4.4 Defining the Conversion Instructions

Conversion instructions provide specific directions for the document generation process. In
the following example, the conversion instructions set the document to be output in three
formats. Note that multiple formats imply the output file will be a compressed ‘zip’ package.

SimpleConversionInstruction instruction = new
SimpleConversionInstruction();

instruction.setConverterGroupName("batch1")

instruction.setConversionFormats(new ConversionFormat[] {

 ConversionFormat.FORMAT_ODF,

 ConversionFormat.FORMAT_WORD,

 ConversionFormat.FORMAT_PDF, });

instruction.setOutputFileName("exampleDocument");

Docmosis-Java Developer Reference
Version 4.7

Page 27 Oct 2023

4.5 Defining the Output Destination

Docmosis allows documents to be rendered to any destination. The DocumentProcessor
class renders documents to OutputStreams or to Files. You can send a document to
anywhere you like as long as you can create an OutputStream to reach it. This includes
anything from local and remote files to Databases to Web Based document repositories or
email sub-systems.

4.6 Preparing the Data

All data is provided to the render process via the DataProvider interface. The data is
rendered into the desired format by merging the data in the data provider with the elements
in the template.

Docmosis provides several DataProvider implementations covering different sources of
data. There is only one class which the developer will typically need to use to collect the data
together for a document: the DataProviderBuilder class.

The DataProviderBuilder class provides many methods for collecting data from Strings,
Files, Databases and Java Objects. Data can be comprised of any combination of sources
required. The following example collects some data together from a few difference sources
including a database query and a Java object:

DataProviderBuilder dpb = new DataProviderBuilder();

dpb.add("documentSource", "Repository Alpha");

dpb.add(imageFile, "diagnosticChart");

dpb.addSQL(resultSet, "results");

dpb.addJavaObject(new MedicalRecordData(123244L),
"medicalData");

With this data collected, you can then use it in a call to a render method. For example:

DocumentProcessor.renderDoc("medicalTemplate.doc",
"medicalDoc.pdf",

 dpb.getDataProvider());

4.6.1 Adding Simple Textual Data
To add simple textual data, use the DataProviderBuilder.add() methods. There
are several methods to add key-value pairs that can be used by templates. The
following examples show some of these methods in use.

Docmosis-Java Developer Reference
Version 4.7

Page 28 Oct 2023

DataProviderBuilder dpb = new DataProviderBuilder();

// add the name of the project

dpb.add("projectName", "Deisel Institute");

// add some contact information

dpb.addAll(new String[][]{

 {"contact1", "Jerry Squire"},

 {"contact2", "Amy Dice"}});

// add profile data

dpb.addFile(new File("companyProfile.txt"), '|');

See the Docmosis API for more methods of the DataProviderBuilder class.

4.6.2 Adding Textual Data with HTML-like Mark-up
Docmosis can optionally interpret textual data, looking for bold, italic or underline
indicators within the text itself.

Text is added same way as above, using the DataProviderBuilder.add() methods.

For example:

DataProviderBuilder dpb = new DataProviderBuilder();

dpb.add("myMarkup", "This will be bold and this will
be <u>underlined</u>");

The text:

"This will be bold and this will be <u>underlined</u>"

Will be displayed in the document as:

 This will be bold and this will be underlined.

The following table lists the supported mark-up.

Value Result

 and Bold the text between the two tags.

<i> and </i> Italicize the text between the two tags.

<u> and </u> Underline the text between the two tags.

<bgcolor="#rrggbb"/> Change the background colour of the table-cell containing this

Docmosis-Java Developer Reference
Version 4.7

Page 29 Oct 2023

Value Result

text (which means it only applies to content within tables).

This tag must be at the very beginning of your data item to
take effect. #rrggbb is a typical red, green and blue html
colour specification (eg "#ff0000" is red).

By default, the html processing feature is disabled to allow text with any content to be
written into the document verbatim. It can be turned on by changing the default setting
in your docmosis.properties file to:

docmosis.populator.field.markup.process=true

It can also be changed on a per-document basis by using the
DocumentProcessor.render(RenderRequest) method, since the RenderRequest
allows the setting to be overridden:

RenderRequest rr = new RenderRequest();

rr.setProcessStylesInText(Boolean.TRUE);

See the Docmosis API for more methods of the RenderRequest class.

4.6.3 Adding Structured Data Using Strings
The DataProviderBuilder class allows data to be added using simple strings and an
indexing notation that can build hierarchies of data.

The following example code uses the DataProviderBuilder to create a set of
members. Each member has a name, addr, and DOB value. Such structures can be
used to populate repeating sections of templates. The dot notation and indexing
should be fairly intuitive, given this example.

private static DataProvider buildDataProvider()

{

DataProviderBuilder dpb = new DataProviderBuilder();
dpb.addAll(new String[][] {

 {"projectName", "Project X"},

 {"member.0.name", " Freddy James"},

 {"member.0.addr", "10 Laburnum Crescent, Loganville, NT
6743"},

 {"member.0.DOB", " 10 July 1980"},

 {"member.1.name", " Paul Stuo"},

Docmosis-Java Developer Reference
Version 4.7

Page 30 Oct 2023

 {"member.1.addr", " 3 The Lane, Shayle, NSW 2334"},

 {"member.1.DOB", " 10 Jan 1956"},

 {"member.2.name", " Sam Wells"},

 {"member.2.addr", ""},

 {"member.2.DOB", " 1 Apr 2000"},

 {"member.3.name", " Andrew Stevens"},

 {"member.3.addr", " 6/12, Mewson Towers, Murray Street,
Perth, WA 6000"},

});

return dpb.getDataProvider();

}

There is no limitation to the depth of structures you can create using this form of data.

4.6.4 Adding XML Data
Data that is in XML format provides a hierarchical structure that makes it highly suitable
for matching to Docmosis templates. There are several methods in the
DataProviderBuilder class to utilise XML data whether it is in a file, a document or
an input stream.

The XML root node forms the root of the data structure being added by default though
this may be overridden, and the XML attributes are included in the data.

Several DataProviderBuilder methods also allow you to pass an XMLNodeFilter
instance. The filter will be used to allow you application to dynamically filter out parts of
the XML that are not intended for the document being rendered. For example, the
following code snippet only includes nodes from the XML document with the name
"person":

4.6.5 Adding JSON Data
JSON format provides an ordered, hierarchical structure much like XML, but with lower
overhead. Docmosis supports direct use of JSON format data, allowing JSON data to be
aggregated with any other data in the DataProviderBuilder.

A simple example adding some person details in JSON format might look like this:

DataProviderBuilder dpb = new DataProviderBuilder();

String data="{\"name\":\"Damien\", \"address\":\"1 Test
Street\"}";

dpb.addJSONString(data);

Docmosis-Java Developer Reference
Version 4.7

Page 31 Oct 2023

See the javadoc for the addJSON* methods of the DataProviderBuilder in the
Docmosis API for more details.

4.6.6 Adding Image Data
Images can be added to the data using the one of several DataProviderBuilder
methods.

Firstly, a stream of image data can be added directly as shown in the following snippet
which retrieves an image using a (fictitious) getChartImage() method and adds it
with the name chart1:

DataProviderBuilder dpb = new DataProviderBuilder();

InputStream chartStream = getChartImage();

dpb.addImage("chart1", chartStream);

If images are contained in files the simplest method to reference them is:

DataProviderBuilder dpb = new DataProviderBuilder();

dpb.addImage("chart1", new File("chart.png"));

The DataProviderBuilder class also allows image files to referenced using add(String,
String). This provides another convenience method. The following example will add
the file chart1.jpg to the data under the name chart1:

DataProviderBuilder dpb = new DataProviderBuilder();

dpb.add("chart1", "[image:chart1.jpg]");

This same mechanism works for all key-value methods in Docmosis, including adding
from files of key-value pairs. The special prefix for the value “[image:” is deemed to
mean an image in a file.

If your image data is contained inside Databases or Java objects, then read on to the
following sections to see how to add these types of data sources. Also see section 5
Matching Data to Templates, which discusses how image data is retrieved for
population.

See the Docmosis API for more methods of the DataProviderBuilder class.

4.6.7 Adding Java Objects
When you add Java objects to a DataProviderBuilder, Docmosis will extract data
from the Java object by calling public methods on the objects during population. The
fields in the template itself will drive Docmosis to extract the required information.

Docmosis-Java Developer Reference
Version 4.7

Page 32 Oct 2023

The following example code adds a Java object called personDetailsObject to the
data available for the template (using the term "personDetails"):

DataProviderBuilder dpb = new DataProviderBuilder();

dpb.addJavaObject(personDetailsObject, "personDetails");

In the case above, the template will use the name "personDetails" to access data
contained in the personDetailsObject Java Object.

Docmosis can work with Collections, arrays and custom Java objects in any
combinations. When rendering a document, Docmosis will step into Java objects as
directed by the template fields, so long as the step can be achieved via a public method.

Docmosis does its best to be flexible when retrieving data from Java objects, making the
necessary conversions as appropriate. For example, if a field (<<real>>) is used to
display the value from the getReal() method, and that method returns a boolean,
Docmosis will display the String value of the boolean value. When Docmosis retrieves
image data from Java objects it only looks for methods returning an InputStream,
since it is not logical to attempt any conversions in this case.

During population, the names of template fields will automatically be transcribed into
calls into the Java objects. For example, if the template contained a field:

 <<firstname>>

then Docmosis will attempt to find a method to provide the first name in the given
personDetailsObject by calling getFirstname(). More information about how the
template extracts data from the various data sources is described in Section 5 Matching
Data to Templates.

4.6.8 Adding Database Queries
The DataProviderBuilder class also allows database result sets to be added to the
data to be merged into a template. Docmosis will load all data from a given ResultSet
into memory, making it available to the document rendering process.

There are two methods for adding ResultSets to the DataProviderBuilder. The
first takes a ResultSet and a String name. All data in the ResultSet will be made
available using the column names from the result set under the context of the given
name. For example:

ResultSet rs = statement.executeQuery("select name,address
from people");

DataProviderBuilder dpb = new DataProviderBuilder();

dpb.addSQL(rs, "records");

This will create a repeating set of “records” entries, each containing a name and address
from the query results. It is equivalent to:

Docmosis-Java Developer Reference
Version 4.7

Page 33 Oct 2023

records.0.name

records.0.address

records.1.name

records.1.address

records.2.name

records.2.address

…

If the template has a repeating section (etc list, table rows) using “records” as the
identifier, then each repetition will have access to a name and address accordingly.

The second method for adding ResultSets to DataProviderBuilders is significantly
more sophisticated. It provides the means to transform the given ResultSet, which is
a two-dimensional grid of data, into a hierarchy of information. For example:

ResultSet rs = statement.executeQuery(

 "select h.id as hotelid, h.name hotel, f.id floorid, f.name
floor, " +

 "f.capacity, f.roomcount " +

 "from hotel h, floor f " +

 "where f.hotelid = h.id");

DataProviderBuilder dpb = new DataProviderBuilder();

Discriminator hotelDiscriminator = new
Discriminator("hotelid");

DataProviderSQLGrouping hotelGroups = new
DataProviderSQLGrouping("hotels",

 hotelDiscriminator, new String[]{"hotel"});

Discriminator floorDiscriminator = new
Discriminator("floorid");

DataProviderSQLGrouping floorGroups = new
DataProviderSQLGrouping("floors",

 floorDiscriminator, new String[]{"floor, roomcount"});

dpb.addSQL(rs, new DataProviderGrouping[]{hotelGroups,
floorGroups});

The code above uses Discriminators and DataProviderSQLGroupings to group the data
returned by the query into hotels, and within each hotel data is grouped into floors.
The data resulting data is equivalent to:

Docmosis-Java Developer Reference
Version 4.7

Page 34 Oct 2023

hotels.0.hotelid

hotels.0.hotel

hotels.0.floors.0.floorid

hotels.0.floors.0.floor

hotels.0.floors.0.roomcount

hotels.0.floors.1.floorid

hotels.0.floors.1.floor

hotels.0.floors.1.roomcount

…

hotels.1.hotelid

hotels.1.hotel

hotels.1.floors.0.floorid

hotels.1.floors.0.floor

hotels.1.floors.0.roomcount

hotels.1.floors.1.floorid

hotels.1.floors.1.floor

hotels.1.floors.1.roomcount

…

The discriminators are used to determine the difference between data elements. In the
case of the hotels, the hotel id is used to separate hotels. The hotel name would often
be applicable also, but the use of an id would allow two hotels that have the same name
to be grouped and thus reported separately.

The groupings combine a discriminator and an array of columns to construct the group.
For each discriminator value, a separate copy of the group will be created, and the
group will also contain values for the other mentioned columns.

Note that these transformations are reasonably complex, and it may take a bit of
practice to become proficient.

Docmosis-Java Developer Reference
Version 4.7

Page 35 Oct 2023

4.7 Generating the Document

Generating the document means merging the data in the DataProvider with the template
elements to generate the output documents. The document is rendered according to the
instructions in the conversion instructions.

When you have prepared all of the objects for the document generation, the document
production is invoked by calling one of the render methods of the DocumentProcessor class.

One example is:

DocumentProcessor.renderDoc(templateId, dp, instruction,
streamTo);

There are a few variations of the render method. For more information, refer to the online
API documentation at http://www.docmosis.com.

4.8 Closing Down Docmosis

When an application is shutting down or no longer needs Docmosis, it should close down
Docmosis with the following call:

SystemManager.release()

This should not be done after each render – the performance impact would be bad.
Docmosis is only meant be shutdown when document generation is no longer required.

4.9 Error Handling

Docmosis offers two ways to deal with errors encountered during processing:

1. "development mode" - acknowledge errors but complete the operation if possible

2. "production mode" - treat errors as fatal and throw an exception

These two "modes" of operation apply separately at the template analysis/registration stage
and the document production/render stage.

4.9.1 Controlling Error Handling
Default behaviour for error handling can be specified using the values below:

Property Values Affects

docmosis.analyzer.error.fatal true or false

true = production mode

Template
Registration

Docmosis-Java Developer Reference
Version 4.7

Page 36 Oct 2023

Property Values Affects

false = development mode

Defaults to false

docmosis.populator.error.fatal true or false

true = production mode

false = development mode

Defaults to false

Document
Rendering

Error handling can also be overridden in a ‘per-operation’ fashion. To control the
setting for the template registration process, you need to use a TemplateStore that
considers errors fatal. For example, when using the DropStoreHelper to register
templates:

TemplateStore store = TemplateStoreFactory.getStore(true); //
set errors fatal

DropStoreHelper dsh = new DropStoreHelper(store);

... //process templates using this helper

To override the error handling behaviour of document rendering, use a
RenderRequest instance with the DocumentProcessor:

RenderRequest rr = new RenderRequest();

rr.setPopulationErrorsFatal(true); // override rendering to
treat errors as fatal

...// set other request properties

DocumentProcessor.renderDoc(rr);

4.9.2 Recommended Configurations
The following table describes the recommended configurations for each type of
execution environment:

Environment
Template
Analysis

Mode

Document
Render
Mode

Net Effect

Development
and

Early-Test

development development As far as possible, a document will always be
generated. The document will highlight the
location of the problem using red text.
Details about the error and possible
remedies are placed in the footer of the

Docmosis-Java Developer Reference
Version 4.7

Page 37 Oct 2023

Environment
Template
Analysis

Mode

Document
Render
Mode

Net Effect

affected pages. This makes diagnosing
template issues simpler.

Late-Test and
Production development production

A document with errors will never be
delivered. The process will fail with an error
instead.

Docmosis is configured to be in "development" mode by default for all operations to
make it easy to get started. See section 7.4 Properties for Production for more
information.

4.10 Other Features

Docmosis supports various other features for document generation. These can be controlled
by settings on the ConversionInstruction and the RenderRequest instances passed to the
DocumentProcessor.render() methods.

The Docmosis Java API is a good source of detail for each of these classes.

4.10.1 Setting Password Protection
Password protection for opening documents can be individually specified for Word and
PDF documents. The following example sets passwords for both formats:

ConversionInstruction ci = new ConversionInstruction();

ci.setPdfPasswordProtect("mySuper101Pw");

ci.setWordPasswordProtect("mySuper101Pw");

If the password is lost or forgotten you may not be able to read your documents.

4.10.2 Using Watermarking
Watermarking allows text to be placed broadly across the page, separate from the
document content. This is ideal for marking documents as draft, for example. To
watermark in PDF documents, use the setPdfWatermark(String) method of
ConversionInstruction. Further control of the watermark (colour, rotatation etc) is
provided with the other setPdfWatermark*() methods in ConversionInstruction.

Docmosis-Java Developer Reference
Version 4.7

Page 38 Oct 2023

If you are producing non-PDF format documents and you want to generate a
watermark, this needs to be controlled in your template. The best general approach is
to place an image in the template that is anchored to conditional text in the header or
footer using the Microsoft Word or LibreOffice image anchor.

4.10.3 Setting PDF Title and Initial View
There are many other PDF controls that can be specified using the
conversionInstruction class. The following example sets the title for the PDF
(displayed in the PDF window bar usually) and some initial view settings.

ConversionInstruction ci = new ConversionInstruction();

ci.setDisplayTitle(true);

ci.setPdfOpenInFullScreen(true);

ci.setPdfHideViewerToolbar(true);

The actual title text comes from the document title property of your template.

4.10.4 Enabling PDF Archive Mode PDF/A-1a
Archive Mode is intended for creating PDFs that are PDF/A-1a compliant for the
purposes of long-term storage. The PDF is self-contained meaning fonts, images and all
other content must be standalone in the document.

Note that this mode is (by design) incompatible with some PDF features such as
hyperlinks to external sources.

Archive mode can be enabled by specifying setPdfArchiveMode(boolean) method
of ConversionInstruction.

4.10.5 Setting PDF Accessibility / Low Vision Mode
“Tagged” Mode is intended for creating PDFs with extra information embedded for
accessibility tools such as document-readers to be able to read the more from the
document. One particular example is reading the ALT-Text behind an image, allowing
the reader tool to describe the image to the user.

This is enabled by specifying setPdfTagged(boolean) method of
ConversionInstruction.

By default, this setting is not enabled, but enabling it adds the extra information
to the PDF.

Docmosis-Java Developer Reference
Version 4.7

Page 39 Oct 2023

5 Matching Data to Templates

The provision of data into the template is the most interesting and challenging feature of
Docmosis. Data may come from a variety of sources and be combined to populate a
template. Both the template and the data can evolve to contain quite complex structures.
The key to success is in ensuring the structures match.

This chapter provides information about connecting the data from your application to the
templates using Docmosis. Section 5.1 discusses how data is structured, and section 5.2
discusses how elements of the templates relate to the data structures.

5.1 The Sources of Data

The sources of data that Docmosis can use range from simple key-value pairs of Strings
through to complex data structures embodied in Java objects. Since templates are often
structured (containing nested or repeating content), the data must have a matching structure
so that Docmosis can marry the two.

All sources of data can provide Docmosis with a structure. The following sections describe
how the data can be (or is) structured.

5.1.1 String Data
Structure is indicated by using the period (.) character in the keys for String data. The
DataProviderBuilder class detects the period character in keys and automatically
structures the data.

For example this code:

DataProviderBuilder dpb = new DataProviderBuilder();

dpb.add("person.name", "Frederick");

dpb.add("person.age", "20");

automatically creates a data structure of a person containing attributes name and age.
The DataProviderBuilder splits Strings around the period character creating
containers of sub-data as required.

Going a step further, this type of data can be indexed which gives order to containers of
data. This example code creates two person containers each containing a name and
age and ordered according to the indexes 0 and 1. The template may reference a
specific person in this ordered list or loop over each person:

DataProviderBuilder dpb = new DataProviderBuilder();

Docmosis-Java Developer Reference
Version 4.7

Page 40 Oct 2023

dpb.add("person.0.name", "Julie");

dpb.add("person.0.age", "25”);

dpb.add("person.1.name", "Frederick");

dpb.add("person.1.age", "20");

This type of String information can be constructed to any depth and can be sourced
from Java code or delimited files.

5.1.2 Java Objects as Data
Java Objects are already hierarchically structured. A Person class may contain
information in an Address class, which may in turn contain different aspects of an
address as Strings or other classes. When a Java object is added using the
DataProviderBuilder, all publicly visible parts of that object are available to the
template, courtesy of Java’s excellent Reflection facilities.

Docmosis translates the names of fields into method calls on the Java objects and
makes some special allowances for arrays and Collections.

The DataProviderBuilder method addJavaObject(Object object, String name) is the
easiest way to add Java objects to work with. This will make the Java object, and all the
data contained (or referenced) by it available to the template, under the given name.

Add Java Objects using the addJavaObject(Object, String) method rather
than the addJavaObject(Object) method. It is much safer to give the Java
object a name via which it can be referenced in the template, otherwise a Java
object can mask (or hide) other data.

To help with debugging issues when looking up data in Java object hierarchies,
turn the logging level of your logging software (Log4J or Java logging) to
DEBUG/FINEST. This will log out detailed information about what methods
Docmosis is attempting to call on what Java classes. This can make it clear when
the template and Java data don’t align.

5.1.3 SQL Query Data
The DataProviderBuilder class allows SQL Queries to be treated as simple 2-D grids
of data, or to be transformed into a data-hierarchy to match a template. Query data
has a structure already (a grid of rows and columns) but can be transformed into a
hierarchy to match the template precisely.

Docmosis uses the meta-data (such as column names) as keys into the data, whereas
String data has explicitly defined keys and Java Objects have method signatures.

Docmosis-Java Developer Reference
Version 4.7

Page 41 Oct 2023

5.2 Populating Data

The function of merging data into the document is driven entirely by the template. Docmosis
works through the template using the fields as guidance to determine which data to fetch and
use for either inserting into the document or making decisions (such as exclusions or
repetition). If the data provider has data that is not required by the template, then it is simply
not used. For example, a fully populated Person object could be used in the rendering of a
document from a template that only requires the name of the person. In this case, Docmosis
would only fetch the data for the name of the person.

The following sections describe the fields in a template, and how Docmosis identifies the data
to retrieve from the data provider.

5.2.1 Using Simple Lookup Fields
When Docmosis encounters a simple lookup field, it uses the name of the field and
makes a call to the data provider to provide a value. For example, the field:

<<firstname>>

Will result in lookups for data in the following ways:

String Data Java Objects SQL Query

Key “firstname” Method getFirstname() Column “firstname”

This is fairly intuitive behaviour, even for the Java method invocation which simply
prepends get and makes the first letter upper-case.

There is some extended notation available only for fields that are to fetch data from
Java objects. Firstly, instead of using the field name to find a matching getName() type
of method, the field may contain brackets “()” characters at the end of the name to
indicate the name should be taken literally. Further, the literal method can be passed
String parameters directly from the template. These behaviours are best shown with a
few examples:

Field Name Java Method Invocation Description

<<firstname>> getFirstname() Simple field name
transformed into a get
method

<<getFirstname()>> getFirstname() Field name with ()
characters indicating literal
method name

<<firstname()>> firstname() Field name with ()
characters indicating literal
method name

Docmosis-Java Developer Reference
Version 4.7

Page 42 Oct 2023

Field Name Java Method Invocation Description

<<firstname('lower')>> firstname("lower") Literal method name call
with single string
parameter (value "lower")

<<firstname('lower','2')>> firstname(new String[]
{"lower","2"})

Literal method name call
with single String[]
parameter (values "lower"
and "2")

Docmosis maps the name of the field to a Java method or to an SQL column if that
is the underlying data. If the data retrieved from the method or column is not a
String type, it is displayed as text on a best effort basis by default. The use of Field
Renderers allows the transformation of any data type (booleans, dates integers
etc) into textual information to be controlled and Docmosis applies some built-in
renderers for dates and booleans. See section 6.1 Using Field Renderers for
details.

SQL Query data is always given a container (or context) since it is expected to be
repeating rows of data. This means simply referencing a column name in a field
will not work; your field will either need to make a nested lookup (see below) or
be inside a repeating section (which is described further down).

5.2.2 Using Nested Lookup Fields
Nested lookups are performed by fields with names containing a period (.) character.
The term “nested” refers to the way Docmosis will “delve” into data containers. For
example, the field:

<<person.firstname>>

will result in lookups for data in the following sequences:

String Data Java Objects SQL Query

1) get container "person"

2) key "firstname"

1) Object o = getPerson()

2) o.getFirstname()

1) get container "person"

2) column "firstname"

This means that the “person” container is obtained first, and then from that the
“firstname” is obtained.

The same extended notation as described in section 5.2.1 for Java data applies to
nested lookups as to simple lookups. The following are examples:

Docmosis-Java Developer Reference
Version 4.7

Page 43 Oct 2023

Field Name Java Method Invocation

<<person.firstname()>> 1) getPerson()

2) firstname()

<<person().firstname()>> 1) person()

2) firstname()

<<person('james').firstname()>> 1) person("james")

2) firstname()

As the examples show, literal, non-literal and parameterized forms of fields can be
mixed as desired within the field name.

5.2.3 Indexed Lookup
Fields may make explicit indexed lookups on data. This means that from a collection or
list of items, a template can retrieve a particular item. In combination with nested
lookups, this produces an effective, direct-data-referencing mechanism.

Using square brackets, fields can reference particular containers of data. If our data
contained a collection of people, then the following field:

<<people[0].firstname>>

Would reference the firstname of the first person (at index zero). To get the fourth
person’s first name (index 3) the following field could be used:

<<people[3].firstname>>

Docmosis provides other ways to index data; [F] for first, [L3] for last 3 etc. Refer
to the Docmosis-Java Template Guide for further details.

To loop over collections of data rather than reference explicit numbered items, a
repeating section is used. Refer to section 5.2.5 Using Repeating Sections and
Repeating Table Rows below.

Docmosis allows you to reference items that are out of bounds. If you refer to an
item that is out of bounds, a blank is returned. If using Java objects as data, some
control over this “forgiving” behaviour can be configured; refer to section 6.2.2.2
Setting Unforgiving Mode.

Docmosis-Java Developer Reference
Version 4.7

Page 44 Oct 2023

5.2.4 Using Image Data
Image data is retrieved from the data sources using the same techniques as for textual
data. The difference is that when retrieving the data, Docmosis is looking for a binary
stream of data rather than text.

Image data can be added using the techniques described in section 4.6.4 Adding XML
Data, and is referenced in the template by attributes of an image placeholder. This is
discussed in detail in the Docmosis-Java Template Guide.

Once the name of the image is known, Docmosis uses the same techniques to look up
the name in the provided data. For Java Reflection, the underlying getter method must
return a type of InputStream, otherwise Docmosis will assume it’s not for image data.

For example, if we had a placeholder image labelled bm_chart1 in the template, then
the Java object providing the image would need a method with the following signature
to populate the image:

public InputStream getChart1()

Docmosis uses the prefix "bm_" to identify a book mark that is relevant to Docmosis. If
you bookmark an image but forget the prefix, Docmosis will ignore it.

5.2.5 Using Repeating Sections and Repeating Table Rows
Repeating sections of templates are identified by fields starting with the rs_ prefix (e.g.
rs_people). Repeating table rows are are equivalent method, but use the rr_ prefix
(e.g. rr_people), and work specifically with a specified set of table rows.

The way these fields link to the underlying data follows the same rules as has been
discussed so far (nesting and indexing), but what is different is they also expect some
part of the name to be a container of repeating data.

In the case of rs_people (and rr_people), Docmosis will retrieve a container of data
from the data provider under the name “people” and attempt to repeat the template
content for each “person”. Importantly, everything in between the rs_people and
es_people tags is automatically referenced in the context of the current “person”.

Docmosis-Java Developer Reference
Version 4.7

Page 45 Oct 2023

Consider the following template snippet:

The content between the tags rs_IDSets and es_IDSets will be repeated. Docmosis
will look up IDSets from the data and repeat as far as possible. If there is no container of
data then this section of the template will not appear in the final document. Then, for
each item in the retrieved container of data, each of the following data lookups will occur:
name, position, telephone, email, profileSummary.

Docmosis-Java Developer Reference
Version 4.7

Page 46 Oct 2023

The sequence of data lookups that would occur when populating this part of the template would look as follows:

Step String Data Java Objects SQL Query

1.

key "IDSets " as elements method getIDSets() as elements container "IDSets" or grouping "IDSets" as
elements

2. Key "element.0.name" method getName() on element 0 column "name" on element 0

3. Key "element.0.position" method getPosition() on element 0 column "position" on element 0

4. Key "element.0.telephone" method getTelephone()on element 0 column "telephone" on element 0

5. Key "element.0.email" method getEmail()on element 0 column "email" on element 0

6. Key
"element.0.profileSummary"

Method getProfileSummary() on element 0 column "profileSummary" on element 0

7. Key "element.1.name" method getName() on element 1 column "name" on element 1

8. Key "element.1.position" method getPosition() on element 1 column "position" on element 1

9. Key "element.1.telephone" method getTelephone() on element column "telephone" on element 1

Docmosis-Java Developer Reference Version 4.7 Page 47 Oct 2023

Step String Data Java Objects SQL Query

10. Key "element.1.email" method getEmail() on element 1 column "email" on element 1

11. Key
"element.1.profileSummary"

Method getProfileSummary() on element 1 column "profileSummary" on element 1

12. Key "element.2.name" method getName() on element 2 column "name" on element 2

13. key "IDSets " as elements method getIDSets() as elements container "IDSets" or grouping "IDSets" as
elements

14. Key "element.0.name" method getName() on element 0 column "name" on element 0

15. Key "element.0.position" method getPosition() on element 0 column "position" on element 0

… … … …

Docmosis-Java Developer Reference Version 4.7 Page 48 Oct 2023

Repeating sections may be nested to an arbitrary depth (that is, one inside the other)
and they may also be nested inside conditional sections or table cells.

Repeating sections may be named using nested terms but will only repeat over one
term of a nested name. If a nested name is used and no ranges are specified, then only
the first item for each term is used and the last term is repeated over. For example:

rs_people.friends

Is taken to mean

rs_people[0].friends[*]

which means “repeat for all friends of the first person”. Docmosis allows you to turn
this default behaviour around and using explicit ranges:

rs_people[*].friends[0]

which means “repeat for all people and using the first friend”.

The important thing to remember about repeating sections is that all template
fields within the repeating section will be in the context of that section already.
That is, as far as the data is concerned, when you step into a repeating section
you are stepping into a container of data.

As a convenience in the templates, repeating and conditional sections can use a
short-hand notation for the end section field. For example, the <<es_>> field can
be used to the currently open repeating or conditional section.

The discussion above relates to repeating table rows in the same way; the content of
the rows that are being repeated is in the context of the data referenced by the rr_ tag.

5.2.6 Using Fields in Bullets or Numbered Lists
If you place a field in a numbered or bullet list style, Docmosis will automatically try to
work out if you want this list to start repeating over data behind the field. This is simply
a short-cut to populating lists in documents. The Docmosis-Java Template Guide shows a
few examples of adding bullet and numbered lists that make use of this feature.

There are no special concerns requiring lining this type of field up with the template. It
is enough to understand the concepts that have been discussed thus far for looking up
nested and repeating data.

As an example, consider the following template snippet:

Docmosis-Java Developer Reference
Version 4.7

Page 49 Oct 2023

This is logically equivalent to a friends field inside a rs_friends[*] (or simply
rs_friends) repeating section. The following table describes the sequence of calls
that could be expected for different sources of data:

Step String Data Java Objects SQL Query

1
key "friends " as
elements

method getFriends() as
elements

container "friends" or
grouping "friends" as
elements

3
Key
"element.0.friend"

method getFriend() on
element 0 of getFriends()

column "friend" in
element 0

3
Key
"element.1.friend"

method getFriend() on
element 1

column "friend" in
element 1

3
Key
"element.2.friend"

method getFriend() on
element 2

column "friend" in
element 2

3
Key
"element.3.friend"

method getFriend() on
element 3

column "friend" in
element 3

… … … …

5.2.7 Using Conditional Sections, Conditional Tables Rows &
Columns
Conditional sections, conditional table rows and conditional columns have a similar
notation and cover a “sub-set” of template content. The relevant condition is evaluated
and the template content is either processed or skipped.

Conditional type fields can use data lookup names directly which expect a true/false
type of answer, or they can specify and expression to evaluate. Expressions
themselves are made up of terms that may be literal values, data lookups or variable
lookups as appropriate.

Docmosis uses the name of associated with the cs_, cr_ and cc_ tags to look up and
evaluate a true/false answer. In the following template snippet:

Docmosis-Java Developer
Reference Version 4.7

Page 50 Oct 2023

Docmosis will make the following calls for the <<cs_independent>> field and evaluate
the result as a boolean true/false answer:

String Data Java Objects SQL Query

Key "independent" isIndependent() if not found,
getIndependent()

column
"independent"

If the answer is false, the section will not appear in the resulting document.

Unlike repeating content, the step into a conditional field does NOT change the context
of the data lookup. For example, in the following template snippet above,
<<independentName>> field is considered to be at the same “level” in the data as the
<<cs_independent>> field. The sequence of calls would be (assuming a true result for
the condition):

Step String Data Java Objects SQL Query

1. key "independent" isIndependent() if not found,
getIndependent()

column
"independent"

2. key "independentName" method getIndependentName() column
"independentName"

Conditional Sections (cs_) and Conditional Table Rows (cr_) use a matching end
tag (es_) to define the end of the conditional region. Conditional columns (cc_)
do not specify an end tag and simply apply to the entire column.

5.2.8 Java Lookup Examples
Since Java lookups can be reasonably complex, the following table of examples can
serve as a useful reference. The table shows the template field on the left and the
resulting calls into the Java objects during document generation.

Template Field Java Invocations

<<firstname>> getFirstname()

<<person.name>> getPerson().getName()

<<person.address.line1>> getPerson().getAddress().getLine1()

Docmosis-Java Developer
Reference Version 4.7

Page 51 Oct 2023

Template Field Java Invocations

<<people.size>> getPeople().getSize()

getPeople().length (if getPeople() returns an array)

<<firstname{renderer=x}>> getFirstname() and then apply renderer “x”

<<people[0].name>> getPeople().get(0).getName()(if getPeople() returns a
Collection)

getPeople()[0].getName() (if getPeople() returns an
array)

<<rs_people>>

<<rr_people>>

getPeople() (if Collection or array then loop over all
items)

getPeople() (if other Java object, it becomes the
“current” provider of data)

<<cs_result>>

<<cc_result>>

getResult() or isResult() and evaluate it as a boolean

<<cs_{a.b<c.d}>> getA().getB(), getC().getD() and evaluate expression

<<name()>> name() (the brackets indicate the method is explicitly
named)

<<name(‘p1’)>> name(“p1”)

<<name(‘p1’,’p2’)>> name(new String[]{“p1”,”p2”})

<<name(‘a_and_b’)>> name(“a and b”)

<<name(‘a_and_b’)>> name(“a_and_b”)

Docmosis-Java Developer
Reference Version 4.7

Page 52 Oct 2023

6 Advanced Features

6.1 Using Field Renderers

Docmosis allows Field Renderers to be used by fields in a template. Renderers can make
variations to the final display of a field. A renderer can perform the following:

 setting or changing the text to be displayed in the document;

 setting font characteristics such as italics, bold and underlining;

 setting the table cell background colour if the field is inside a table cell.

Field renderers are referenced by name. The way they are attached to fields (as explained in
the Docmosis-Java Template Guide) is using the “renderer” qualifier.

The following example field associates a renderer called nameRenderer with the surname
field:

 <<surname{renderer=nameRenderer}>>

In this example, the Docmosis engine will look for a renderer called nameRenderer and use it
to perform the final adjustments to the display of the surname field.

Docmosis can also apply renderers based on the type of data that’s about to be displayed.
For example, if Docmosis knows the data is of type Date, then it will apply the renderer for
Dates if one has been registered.

The renderers are implemented in Java and implement the FieldRenderer interface.
Docmosis provides some built-in renderers and developers are free to add their own.

6.1.1 Using Built-In Field Renderers
Docmosis has three built-in renderers.

Date formatting and number formatting can also be achieved in the template by
using the built-in functions “dateFormat” and “numFormat”. (see the Docmosis-
Java Template Guide for more information.)

It is recommended to use the new functions where possible.

Docmosis-Java Developer
Reference Version 4.7

Page 53 Oct 2023

Renderer Name
Automatically

Applied To
Description

Date
java.util.Date,

java.sql.Date

Formats date information into desired formats. The default date format is “dd MMM yyyy”.
This renderer takes two optional parameters which are java.util.SimpleDateFormat
compliant format specifications. Where space characters are required in the format,
underscore characters should be used which will be replaced by spaces. Where underscores
are required, the sequence “_” will leave the underscore in place.

As of version 3.2, the built-in date render can also be applied to String data. If a template field
has a date renderer applied and the data found by Docmosis is a String, it will attempt to parse
the string into a Date instance according to a default set of formats. If successful, the render
will be applied to the date as normal (otherwise an error results).

The default input date formats recognized are:

EEE MMM dd HH:mm:ss zzz yyyy;yyyy-MM-dd'T'HH:mm:ss'Z';dd MMM yyyy;dd-
MMM-yyyy;dd/MMM/yyyy;dd MMM yy;dd-MMM-yy;dd/MMM/yy

The property:

 docmosis.renderer.extendedDateInputFormats

can be set to provide additional date formats that Docmosis will use to parse Strings into dates.
Multiple formats can be specified by delimiting with a ; character.

Boolean java.lang.Boolean,
java.lang.boolean

Formats boolean information into desired formats. Instead of being displayed as “true” and
“false”, boolean values can be displayed in a number of ways. The values can even be rendered
in special fonts. Please see the Docmosis-Java Template Guide for the detailed description of
how to use this renderer.

As of version 3.2, the built in boolean render can also be applied to String data. If a template
field has a boolean renderer applied and the data found by Docmosis is a String, it will attempt
to parse the string into a boolean instance according to a default set of formats. If successful,
the render will be applied to the date as normal (otherwise an error results).

The default values for True are:

 true;t;y;yes;1;1.0

Docmosis-Java Developer Reference
Version 4.7

Page 54 Oct 2023

Renderer Name
Automatically

Applied To
Description

The property:

 docmosis.renderer.extendedBooleanTrueValues

can be set to provide additional values that equate to true. Multiple formats can be specified
by delimiting with a ; character.

Number <none>

Formats field data into number formats recognized by Java’s DecimalFormat class.

If the number renderer is attached to field data containing String data, Docmosis will attempt
to parse it as currency or other numeric data, which the renderer can then specify a different
way to present the value. See the Docmosis-Java Template Guide for more information.

Docmosis knows the actual data types of data obtained from Java objects and from SQL queries so can apply renderers based
on type without having to name them in the template.

Examples of use of the built-in field renderers can be found in the Docmosis-Java Template Guide.

Docmosis-Java Developer Reference
Version 4.7

Page 55 Oct 2023

6.1.2 Building Your Own Field Renderers
Developers can build their own FieldRenderer implementations. Template fields can
then explicitly (by name) or implicitly (by data type) use the renderers.

How To Write A Renderer
To write a renderer, create a Java class that implements the FieldRenderer interface.
This is a simple task since there is a single method to implement:

public RenderedField render(FieldDetails fieldDetails,
RenderedField field) throws FieldRendererException;

Your implementation of render() must return a RenderedField instance. The
implementation can examine the details of the field being rendered from the given
FieldDetails instance and make decisions about what to alter. Alterations can be
made to the given RenderedField, which can then be returned at the end of the
method.

There are two reasons that Docmosis passes a RenderedField instance to this
method:

1. Effects can be compounded. Docmosis may make settings to renderers based on
instructions from the template. For example, if table row colours are being
alternated, Docmosis will pass this information through the renderer and the
implementations can choose to leave or override it.

2. Object creation can be minimized (for system performance). Docmosis does not
create a RenderedField instance per call to a field renderer saving in potentially
very high number of object creations.

As far as errors go, your renderer can throw a RuntimeException, or preferably, throw
a FieldRendererException with a meaningful error.

The following example defines a field renderer that obscures firstname and surname
fields so they won’t be displayed in the final document:

public static class NameObscuringFieldRenderer implements
FieldRenderer

{

public RenderedField render(FieldDetails fieldDetails,
RenderedField field)

 throws FieldRendererException

 {

if
(fieldDetails.getFieldName().equals("surname")) {

// obscure surname fields

field.setValue("XXXXSNXXX");

} else if
(fieldDetails.getFieldName().equals("firstname")) {

Docmosis-Java Developer Reference
Version 4.7

Page 56 Oct 2023

// obscure firstname fields

field.setValue("YYYYFNYYYY");

} else {

// leave the rendered field unchanged

}

return field;

}

}

Any field in the document with the name firstname or surname and with this renderer
attached will be obscured. Also, if this renderer was registered against the appropriate
data type (e.g. String.class), then it would be applied to all fields where the data
fetched was typed String.

The FieldDetails object provides lots of information about a field so that the
renderer can decide what to do. The following table describes each piece of
information:

Item Description

Field name The name of the template field.

Row number Get the current row number (if inside a set of repeating rows in a
table).

Value class The class of the data item retrieved to populate this field (null if the
data found is not from Java reflection or an SQL query).

Value object The actual value object of the data item retrieved (null if the data
found is not from Java objects or an SQL query).

Field value The String value of the data that has been retrieved.

Container class The class of the Java object on which the call was made to get the
value (null if not applicable).

Container object The object on which the call was made to obtain the value.

Renderer name The Name of the renderer from the template field (since the same
renderer can be used/registered under multiple names if desired).

Renderer parameters The array of parameters that the template field is passing to the
renderer (null if none).

Id (Obsolete) This is the value of the id qualifier that may be attached to a field.
This is obsolete now that renderers can take parameters.

Docmosis-Java Developer Reference
Version 4.7

Page 57 Oct 2023

Item Description

templateVariablesAccessor This class provides access to the template variables that are active
(eg <<$myVar=1>>) at the current point of population. Template
variables can also be set using this member.

Field Renderers must be written to be used safely by multiple threads,
concurrently. Typically, this means you should not create instance or class
variables in your class; instead make sure all variables are within the method.

Registering a Renderer
If you create your own renderer, you must register it with Docmosis to make it available
to the templates. Renderers can be registered for use across all documents generated,
or on a document by document basis.

To register a renderer for general use, use the setDefault* methods on the
RendererRegistry class:

Method Description

setDefaultRendererByName() Set the given Field Renderer instance to be used
by any field referencing it by name in any
template.

setDefaultRendererByClass() Set the given Field Renderer instance to be used
by any field where the data type retrieved to
populate the field is of the given class type. This
only applied to data from Java objects and SQL
queries where strict typing information is
available.

setDefaultRendererByClassAndName() Short cut method for registering by name and by
class.

To use a renderer as a one-off for a given document, use one of the setRenderer*
methods on the ConversionInstruction class. These are equivalent to the ones on
the RendererRegistry class, but they will override any default settings and will only
apply to the one document generation.

6.2 Java Reflection

As discussed, data can be sourced from Java objects as well as a variety of other sources of
data. Occasionally it can be challenging working out how to reference data in Java objects
from Docmosis templates. When things are going wrong, what can be done to figure out the
solution. This section provides some hints and useful information.

Docmosis-Java Developer Reference
Version 4.7

Page 58 Oct 2023

6.2.1 Parameterized Methods
To help reduce the complexity and need for creating new methods to suit data lookup
driven by templates, Docmosis allows templates to explicitly name methods to call on
Java Objects.

By default, Docmosis will prefix the field name with “get” and capitalize the next letter to
attempt to find the relevant method. For example, a field <<name>> would be
transcribed into getName() when calling on a Java object. However, if the field name is
suffixed by brackets, e.g. <<name()>>, Docmosis will call a method name() on the Java
object.

Going one step further, a method can have one or more string parameters passed to it
from the template. To specify a parameter to a method in the template it is placed in
single-quotes inside the brackets as follows: <<name('initial')>>. This corresponds
to a method which takes a single String argument and would be called as follows:

object.name("initial");

If more than one parameter is specified, such as <<name('initial',’final’)>> then Docmosis
would call a method that takes a single String[] argument as follows:

object.name(new String[]{"initial","final"});

This allows a broad flexibility in terms of fetching template-controlled data from Java
objects.

6.2.2 Debugging
Docmosis provides two mechanisms to assist with debugging data provision from Java
objects.

6.2.2.1 Logging Calls

If the logging level is set to debug or finer, then Docmosis will log a fair amount of detail
as to what it is doing. When reflecting, it will say what methods it is calling on what Java
objects. This set of logged calls can then be used to work out where Docmosis is trying
to get its data. Typically once that is known, the adjustment to the template is a
reasonably intuitive adjustment.

Java will log to Log4J if it can be found in the classpath, otherwise it will log
using Java’s own logging facility. Discussions about logging configuration for
these tools is outside the scope of this manual.

6.2.2.2 Setting Unforgiving Mode

When adding Java objects to the data using DataProviderBuilder, it will check the
Docmosis property "docmosis.populator.lookup.java.forgiving" to see if
lookups on the added Java object should be treated as “forgiving” or not. Forgiving
means that if the template calls for a method to fetch some data, and the underlying

Docmosis-Java Developer Reference
Version 4.7

Page 59 Oct 2023

object does not provide the method then it will treat this as simply a no-data found and
return nothing. If the property is set to false, then lookups on Java objects for methods
the object doesn’t have will be treated as an error and highlighted.

Docmosis defaults this “forgiving” behaviour to true. You can set it to false by either
setting the property in the docmosis.properties file or in the Java System properties.

Docmosis-Java Developer Reference
Version 4.7

Page 60 Oct 2023

7 Docmosis Properties

7.1 Property Locations and Overriding

Any Docmosis property may be pushed into Java’s System properties by your code using
System.setProperty(). Setting a property this way overrides any equivalent setting in the
properties file. Setting overriding Docmosis properties needs to be done before the call to the
Docmosis method SystemManager.initialise(). Many Docmosis properties are statically
loaded into the Docmosis classes, hence an application restart is required for changes to
properties to take effect.

Since System.setProperty() can have a scope broader than desired (for example multiple
applications in an application server, Docmosis also provides the Configuration class (as of
version 3.2). Configuration settings can be made and then passed to
SystemManager.initialise(Configuration config) to take effect.

The order of loading properties is done in the following order:

1. load defaults first

2. docmosis.properties (if available)

3. System properties (if set)

4. properties via a Configuration instance

At each step, properties will override any settings in a previous step.

It is recommended that a Configuration instance be used, possibly in conjunction with a
docmosis.properties file to provide general settings across all deployments.

The Docmosis Configuration class provides convenience methods for getting started with
nominal configuration. The simplest way to create a configuration to get started is:

Configuration config = Configuration.standard()

 .setKeyAndSite(key, site)

 .setOpenOfficeLocation(ooLocation);

SystemManager.initialise(config);

The converterPoolConfig.xml file is optional (and if used is expected to be
found in the class path). The Configuration class allows the converter pool to
be configured programmatically via the
setConverterPoolConfiguration() method. Refer to the Java API
documentation for more information.

Docmosis-Java Developer Reference
Version 4.7

Page 61 Oct 2023

7.2 Key Properties

The properties you will have to deal with when getting started, since these are mandatory and
have no default setting, are listed below:

 docmosis.key

 docmosis.site

 docmosis.openoffice.location

See section 3.3 Installing Docmosis (Core Engine) for descriptions on setting these variables.

An example property file can be downloaded from the Docmosis-Java resources on the
Docmosis website (https://www.docmosis.com/resources/docmosis-java.html) under the
Code Samples section. Below is an example of the properties with the two must-address
properties highlighted:

Example property file for Docmosis.

#######################

General Information

#######################

By default, docmosis will look for this file
(docmosis.properties) in the root of class path entries.

Properties can alternatively be specified in Java
System.properties and any properties put into

System.properties will override values in this file.

Some properties are relevant to the Docmosis CORE (that is
the main engine) while others are relevant

to the Docmosis CONVERTERS. Each property below has
comments indicating to which part of Docmosis it applies.

In the case where you have multiple converters distributed
around different computers, you will probably

have multiple copies of this property file. You can choose
to cut those property files down to the bare

minimum for the converters or core as required. For
example, only the Docmosis core cares about the license

key, so only it's properties file needs to specify it.

#######################

Docmosis-Java Developer Reference
Version 4.7

Page 62 Oct 2023

Must-set properties

#######################

Specify the license key

(relevant only to the Docmosis Core)

#docmosis.key=

#docmosis.site=

Specify where to find the open office install

(relevant only to the Docmosis Converters)

Windows examples

#docmosis.openoffice.location=C:/Program Files/LibreOffice

Linux/Unix examples

#docmosis.openoffice.location=/opt/libreoffice

#MacOS

#docmosis.openoffice.location=/Applications/LibreOffice.app/
Contents

##############################

Optional common properties

##############################

The location where the template store is to reside. The
template store should be thought of

as a cache. Templates that are placed into the store
undergo validation and optimisation

in preparation for fast document production. It can be
rebuilt any time so long as you

have your original templates still so they can be
registered again. See the documentation

for the StoreHelper and the DropStoreHelper. This may be
blank and if so, a temp location

will be used.

(relevant only to the Docmosis Core)

docmosis.template.store.location=./templatestore

Docmosis-Java Developer Reference
Version 4.7

Page 63 Oct 2023

A ; delimited list of source paths for templates. Set this
to have Docmosis automatically

monitor these locations for new and updated templates. New
and updated templates will be

loaded (registered) into the template store.

#docmosis.template.monitor.sourcepath=

Number of seconds between checking the various template
sources for changes. The default value

is 5 seconds. -1 means no watching directories and 0
(zero) means just load once on startup.

(relevant only to the Docmosis Core)

#docmosis.template.monitor.period=5

This is the name of the resource to locate in the classpath
which defines the pool configuration

for the Docmosis converters. (relevant only to the Docmosis
Core)

(relevant only to the Docmosis Core)

docmosis.document.converter.pool.config.resource=converterPoo
lConfig.xml

Control how to process a template error during population

If false, errors in the template processing will be
rendered to the resulting

document. If true, template errors will be fatal and
document production will abort

with an Exception being raised.

true is recommended for production and late testing, false
for development and early testing

(relevant only to the Docmosis Core)

#docmosis.populator.error.fatal=false

Control how to process a template error during analysis
(when registering a template into the store).

If false, errors in the template processing will be
rendered to the resulting

document. If true, template errors will be fatal and
analysis will fail with an error (causing the

Docmosis-Java Developer Reference
Version 4.7

Page 64 Oct 2023

registration with the template store to fail).

true is recommended for production and late testing, false
for development and early testing

(relevant only to the Docmosis Core)

#docmosis.analyzer.error.fatal=false

If you would like to do markup in plain text in your
templates (rather than using mergefields)

set these delimiters. Plain text markup and mergefield
markup can be used interchangeably, but

for any template, stick to one format since the consistency
will help you a lot.

Make sure you choose delimiters that won't appear in your
text. You will need to clear your

template store for changes to these settings to take
effect.

(relevant only to the Docmosis Core)

docmosis.analyzer.field.plainText.prefix=<<

docmosis.analyzer.field.plainText.suffix=>>

Try these settings if you are having trouble using embedded
converters with JBoss.

useCustomLoader overrides loadIntoSystemCL so you must set
useCustomLoader=false (or comment it out)

if you want to try loadIntoSystemCL

#(Relevant only to Docmosis Core)

#docmosis.openoffice.useCustomLoader=true

#docmosis.openoffice.libraries.loadIntoSystemCL=true

DOCX format is controlled by these properties.

DOCX format is only supported by Libre Office at this time
(Open Office 4 still only supports

MS 2003 xml format)

If you are using LibreOffice, then you can enable DocX
support by un-commenting the following line

(relevant to the Converters only)

#docmosis.converter.format.docx.internal.enabled=true

Docmosis-Java Developer Reference
Version 4.7

Page 65 Oct 2023

A good general DOCX option is to use the OpenSource odf-
converter (also packaged with odf-converter-integrator).

This will work for Open Office and Libre Office and might
produce better DOCX results than either.

#(Relevant only to Docmosis Converters)

#docmosis.converter.format.docx.external.enabled=true

locate external converter executable

#(Relevant only to Docmosis Converters)

#docmosis.converter.format.docx.external.path=c:/program
files)/odf-converter-integrator/OdfConverter.exe

#docmosis.converter.format.docx.external.path=c:/program
files (x86)/odf-converter-integrator/OdfConverter.exe

#docmosis.converter.format.docx.external.path=/usr/bin/
OdfConverter

Allow html-like markup in data to be interpreted. This
defaults to false normally

to ensure data can be treated as plain text.

(relevant only to Docmosis core)

docmosis.populator.field.markup.process=true

7.3 Other Useful Properties

Several properties are listed below which may be of general interest. These properties can be
set in your docmosis.properties file to take effect.

In addition, a list of properties with specific notes for production environments is listed in
section 7.4 Properties for Production.

Property Descripiton

docmosis.populator.field.markup.process If set to true, text data mark-up (such as for
bold and <i> for italics) will take effect.

If set to false, text is assumed to be plain.

Can be overridden using the
DocumentProcessor.render(RenderRequest)

docmosis.template.store.location Location of the Docmosis template working area. If
not specified, a temporary location will be used.

docmosis.template.monitor.sourcepath A ; separated list of paths to monitor for templates.

Docmosis-Java Developer Reference
Version 4.7

Page 66 Oct 2023

Property Descripiton

Docmosis will periodically examine these locations
for template changes and load any new/changed
templates.

docmosis.template.monitor.period The period in seconds at which the monitored paths
should be examined. Default is 5 seconds.

docmosis.renderer.extendedDateInputFormats

docmosis.renderer.extendedBooleanTrueValues

docmosis.analyzer.field.plainText.prefix The plain text markers used for identifying fields in
templates. They must be set for plain text field mark
up to be active.

docmosis.analyzer.field.plainText.suffix Defaults to <<

7.4 Properties for Production

By default, Docmosis will attempt to render errors into the resulting document. This makes
development and testing easier, but it is not likely that you would ever want such a document
reaching the end user in a production environment. It is more likely that if something goes
wrong, you would want Docmosis to throw an exception (ProcessingException) rather than
generate a document that has at least one error written into it. You can then handle the error
and apologize to the user that the document is not available.

There are two properties that control this behaviour, one for the analysis phase (when
templates are first registered) and one for the population phase (each time a template is used
to generate a document). It is suggested that the second property is set to true for
Production and late-testing environments:

Property
Recommended for

Dev/Test
Recommended for

Production and Late Test

docmosis.analyzer.error.fatal false (default) false (default)
docmosis.populator.error.fatal false (default) True

See section 4.9 Error Handling for more detail.

Docmosis-Java Developer Reference
Version 4.7

Page 67 Oct 2023

8 Troubleshooting

8.1 Getting Additional Support

The Docmosis website is your first point of call for help. There are forums, known issues and
other documentation online to help you solve problems.

If you are unable to resolve your problems or you have a request, you can contact the support
team at Docmosis.

support@docmosis.com

8.2 Known Issues

Please check the docmosis.com website for the latest on known issues and workarounds.

Docmosis-Java Developer Reference
Version 4.7

Page 68 Oct 2023

mailto:support@docmosis.com

	1 Introduction
	1.1 Using this Guide
	1.1.1 Terminology and Conventions Used in this Document
	1.1.2 Related Reading

	2 Docmosis Overview
	2.1 System Description
	2.2 Templates and the Template Store
	2.2.1 Template Context
	2.2.2 Data Providers
	2.2.3 Converters
	2.2.4 Conversion Instructions
	2.2.5 Template Links and Security

	3 Installing and Setting Up Docmosis
	3.1 Planning your Environment
	3.1.1 System Requirements
	3.1.2 Tasks

	3.2 Installing LibreOffice
	3.3 Installing Docmosis (Core Engine)
	3.3.1 Docmosis Configuration Properties
	3.3.2 Configuring the Converter Pool

	3.4 Installing Remote Converters
	3.4.1 Preparing Converters for Use
	3.4.2 Enabling SSL/TLS Communications to Remote Converters

	3.5 Adding Support for Barcodes

	4 Generating Documents
	4.1 Initializing Docmosis
	4.2 Registering Templates
	4.2.1 Help with Template Registration
	4.2.2 Using Convenience Methods
	4.2.3 Registering Templates Automatically
	4.2.4 Using the DropStoreHelper Class
	4.2.5 Using the StoreHelper Class

	4.3 Referencing Templates
	4.4 Defining the Conversion Instructions
	4.5 Defining the Output Destination
	4.6 Preparing the Data
	4.6.1 Adding Simple Textual Data
	4.6.2 Adding Textual Data with HTML-like Mark-up
	4.6.3 Adding Structured Data Using Strings
	4.6.4 Adding XML Data
	4.6.5 Adding JSON Data
	4.6.6 Adding Image Data
	4.6.7 Adding Java Objects
	4.6.8 Adding Database Queries

	4.7 Generating the Document
	4.8 Closing Down Docmosis
	4.9 Error Handling
	4.9.1 Controlling Error Handling
	4.9.2 Recommended Configurations

	4.10 Other Features
	4.10.1 Setting Password Protection
	4.10.2 Using Watermarking
	4.10.3 Setting PDF Title and Initial View
	4.10.4 Enabling PDF Archive Mode PDF/A-1a
	4.10.5 Setting PDF Accessibility / Low Vision Mode

	5 Matching Data to Templates
	5.1 The Sources of Data
	5.1.1 String Data
	5.1.2 Java Objects as Data
	5.1.3 SQL Query Data

	5.2 Populating Data
	5.2.1 Using Simple Lookup Fields
	5.2.2 Using Nested Lookup Fields
	5.2.3 Indexed Lookup
	5.2.4 Using Image Data
	5.2.5 Using Repeating Sections and Repeating Table Rows
	5.2.6 Using Fields in Bullets or Numbered Lists
	5.2.7 Using Conditional Sections, Conditional Tables Rows & Columns
	5.2.8 Java Lookup Examples

	6 Advanced Features
	6.1 Using Field Renderers
	6.1.1 Using Built-In Field Renderers
	6.1.2 Building Your Own Field Renderers

	6.2 Java Reflection
	6.2.1 Parameterized Methods
	6.2.2 Debugging
	6.2.2.1 Logging Calls
	6.2.2.2 Setting Unforgiving Mode

	7 Docmosis Properties
	7.1 Property Locations and Overriding
	7.2 Key Properties
	7.3 Other Useful Properties
	7.4 Properties for Production

	8 Troubleshooting
	8.1 Getting Additional Support
	8.2 Known Issues

