
Docmosis v4.5.0 Release Notes
Dec 2019

New Features / Changes

Change
1 The Template structure extraction and Dummy Data Providers have been enhanced to extract

more information from the fields in the templates. This includes the contents of expression
fields (eg <<{firstName + ‘ ‘ + lastName}>>, sub-template references etc.

2 New template function dateAdd to allow simple adjustments to dates. For example
add a day to myDate:

 <<{dateAdd(myDate, 1, ‘day’)}>>

subtract 3 weeks from myDate

 <<{dateAdd(myDate, -3, ‘weeks’)}>>

The units dateAdd allows are millis, seconds, minutes, hours, days, weeks, months, years and
can be specified as singular (day) or plural (days).

See the Template Guide for more detail.

3 New template function dateDiff to compute the difference between two dates. For example, to
compute d2-d1 in days:

 <<{dateDiff(d1, d2, ‘days’)}>>

The units dateDiff allows are millis, seconds, minutes, hours, days, weeks, months, years and can
be specified as singular (day) or plural (days).

See the Template Guide for more detail.

4 New template function numToText which will write out numbers in English text. For example:

<<{numToText(1024)}>> will output “one thousand and twenty four”.

<<{numToText(302.24)}>> will output “three hundred and two point two four”.

See the Template Guide for more detail.

Page 1 of 51

Change
5 New template function ordinal which will write out numbers in English text. For example:

<<{ordinal(1)}>> will output “1st”.
<<{ordinal(2, ‘suffix’)}>> will output “nd”.
<<{ordinal(23, ‘long’)}>> will output “twenty third”.

See the Template Guide for more detail.

6 New template function numToDollars which will write out numbers in Dollars and cents. For
example:

<<{numToDollars(1024)}>> will output “one thousand and twenty four dollars”.

<<{numToDollars(32.24)}>> will output “thirty two dollars and twenty four cents”.

See the Template Guide for more detail.

7 New template function mapi() which is the same as the “map” function but ignores case when
comparing values.

See the Template Guide for more detail.

8 New template function isNumber() will determine whether the input value is a number. This
can allow conditional processing based on whether the data is numeric or not. For example:

<<cs_{isNumber(invoiceNumber)}>>
 Process numeric invoice
<<else>>
 Process non-numeric invoice
<<es_>>

See the Template Guide for more detail.

9 New template-variable:
 $nowUTCFormat – provides the date format used for the $nowUTC value.
which allows the new dateAdd() and dateDiff() functions to base calculations on the current
date/time.

10 When rendering documents to text format, the output is now UTF-8 format with no “byte order
mark”.

11 Added support for the FODT document format for use as templates and output documents.
12 Added support for Tables inside shape objects for Word templates.

Page 2 of 51

API Changes
The following API changes should be noted

Class / Interface Change
TemplateStructureProcessor This interface requires a new method:

/**
 * Process a reference to another template
 * @param ref the template reference details
 */
public void templateReference(TemplateStructureElement
ref);

and implementations will be called when a <<ref:...>> or
<<refLookup:...>> field is processed in a template.

TemplateStructureElement This interface now provides more information about the element
being processed:
public boolean isFunctionCall();
public boolean isTemplateReference();
public boolean isTemplateReferenceStatic();

/**
 * Get any template-expression associated with this
field.
 *
 * @return null if there is none.
 */
public TemplateExpression getExpression();

/**
 * Get the original text of the element from the
template
 */
public String getOriginalFieldText();

TemplateExpression A new element providing details about the expression field found
in a template.

DataProviderBuilder.addJavaO
bject(Object o)

This method has been updated to work the same as
addJavaOjbect(Object o, String key) with respect to the
property docmosis.populator.lookup.java.forgiving which is
detailed in the Javadoc for the method, but it was not being
observed.

Bug Fixes / Technical Changes

Change
1 Updated authentication system to redirect on success to a calculated url which allows for Load

Balancers (with SSL termination) and proxies.
2 Fixed template processing issue with simple empty 1 line nested rs and cs failing to validate

Page 3 of 51

Change
3 Fixed issue where deeply nested 1 line template structure:

<<rs_>><<cs_>><<cs_>><<cs_>><<cs_>><<es_>><<es_>><<es_>><<es_>><<es_>> type of
structure would fail to analyze.

4 Added yyyy-MM-dd'T'HH:mm:ss.SSS'Z' as a default input date format
5 Fixed issue where bottom borders (and probably top borders) were not processing properly

when conditional columns where used and repeating rows were meant to dictate the border.
6 Fixed expression processing regarding negation function and functions like isBlank() which

would fail to process.
7 Fixed issue with parsing where internal content (soft page breaks) were causing skip sections to

overlap for an <<rs_>><<cs_>> on one line scenario and would fail to analyze successfully.
8 Improvements have been made to processing the styles of sub-templates to preserve more of

the original sub-template design.
9 Updated image processing to detect the case where an image draw frame (bookmarked for

Docmosis) has multiple images inside. This caused corrupt output since it is not expected so
now it is raised as an error.

10 Added a step in the sequence of document creation which improves the accuracy of PDF output
in some corner cases.

11 Updated image bookmark processing to allow for another quirk of docx processing (SVG tags
inside frame and before adjacent bookmark).

12 Detection of SVG placeholder in ODT template causing duplicate images in template with latest
versions of LibreOffice. This raises an error in the template during analysis now indicating the
problem with the placeholder image.

13 Allow data to specify images from URLs with a second prefix (since the typo is common):
[imageURL:…] (in addition to existing [imageUrl:…].

14 Updated library loading to automatically enable the “custom loader” if Java 8 or later is
detected.

15 Fixed issue with Zip processing which could fail to process templates with EMF or WMF images.

Page 4 of 51

Docmosis v4.4.2 Release Notes
Mar 2019

New Features / Changes

Change
1 Added XLSX and CSV to known formats and tested auto-feed-into DocumentConverter. This

means that Excel files can be converted into CSV.
2 Template structure analysis now includes information about template-references (<<ref:xxx>>

and <<refLookup:xxx>> fields) which means they can be detected via the

API Changes
The following API changes should be noted

Class / Interface Change
DataProviderBuilder addJavaObject(Object) updated to honor the “forgiving” lookup

policy when working with Java reflection and Java POJOs. The
configured value for
"docmosis.populator.lookup.java.forgiving" was being
ignored.
Improved JavaDoc for addXMLFile(File) to specify how the XML
root is included in the data.

TemplateStructureProcessor A new method signature has been added:

void templateReference(TemplateStructureElement ref);

to allow specific processing to be performed on template
references (ref and refLookup fields) in the processed templates.

Bug Fixes / Technical Changes

Change
1 fixed corner case regression where an ODT template, with an image bookmarked with a

parameterized method that looks up the image would make an additional (redundant and
incorrect) bad call for an image on the DataProvider. If the DataProvider was in non-forgiving
mode, this would raise an error and fail the render.

Page 5 of 51

Docmosis v4.4.1 Release Notes
Dec 2018

New Features / Changes

Change
1 New template functions:

- replaceStr(source, searchFor, replaceWith [, ignoreCase])
- replaceFirst(source, searchFor, replaceWith [, ignoreCase])

API Changes
The following API changes should be noted

Class / Interface Change

Bug Fixes / Technical Changes

Change
1 Improved converter bootstrapping process to prime the converter with a more realistic

document. This avoids the increased processing time for a first-time-used converter.
2 Fixed issue where table-cell colouring wasn’t being applied (when driven by data eg

‘<bgcolor=”#ff0000”/>’) to table cell when field providing the style information was number or
bullet listed

3 Fixed issue with DOCX image substitution from DOCX templates that could result in the image
not being sized correctly and the text 0.00.0 being displayed.

4 Fixed issue where <<cc_>>, <<rr_>>, <<cr_>> tags might be ignored if list-styled (bullet or
numbered) in the template.

5 Fixed an issue with TableAnalysis which could mis-track which cell is being processed across the
row.

6 Adjusted error handling to not report bad section matches when ending a list if errors have
already been reported. This stops two errors being reported for one problem.

Page 6 of 51

Docmosis v4.4.0 Release Notes
Oct 2018

New Features / Changes

Change
1 Support for Java up to version 11

2 Support for LibreOffice 6

3 Improved Error Handling in Dev Mode
Top level errors now written closer to the location of the error rather than top of document.

4 Improved XML and JSON Sample Data Generation
Generated JSON data is now more compact.

Sample data generation now supports nested names. For example:

 <<a.b.c>>

Generates the sample data:

 {"a": {"b": {"c": "value1"}}}

5 New sentenceCase(), isBlank(), ifBlank(), and squote() Functions
Use sentenceCase() to convert text data to sentence case format:

 sentenceCase('this is a sentence.') => This is a sentence.

Use isBlank() or ifBlank() to test and act based on blank data values:

 isBlank('') => true

Use squote() to replace double quotes with single quotes in a string literal or data to allow
quote-escape:

 squote('This sentence"s quotes.') => This sentence's quotes.

Page 7 of 51

Change
6 New Built-In Template Variables

$num - the current counter into the data.

$num1, $num2... – provide the absolute index into the repeating sequence starting at zero
(i.e. 1,2,3,4,5,6...).

$itemidx1, $itemidx2... – provide the absolute index into the repeating sequence starting
at zero (i.e. 0,1,2,3,4,5...).

$nl - a new line character.
$nowMS – the current UTC time in milliseconds since epoch
$nowUTC - current UTC time as an ISO 8601 string
$quot - a single-quote character

7 Improved Numbered List Processing
Now handles more complex cases of:

- conditioning out some numbered items and resuming numbering
- lists continue after sub-lists rendered
- allow lists to continue from master template into sub-template using a new

"<<list:continue>>" directive

API Changes
The following API changes should be noted

Class / Interface Change
TemplateStructureElement New isHyperlink() method determines if the current element is a

hyperlink.
TemplateStructureElement New getContainingNest() method determines if the current

element has a nested name.

Bug Fixes / Technical Changes

Change
1 Added ability use SSL for remote converters.
2 Improved template-functions to not raise errors when given null values.
3 Improved rendering of merged documents by renaming styles to remove conflict of styles.
4 Updated further functions to handle null/empty params better.
5 Updated remote converter to preserve the extension of the files being transferred. This fixes an

issue with HTML injection where the file encoding is not correct if Libre Office imports the file
and doesn't realize it is html.

Page 8 of 51

Change
6 Added <<list:continue>> directive to allow sub-templates to specify they want to continue

numbering from a master template.
7 Improved list processing to track the lists rendered so that stripped lists (e.g. conditional

sections) don't break linkages between lists.
8 Fixed bug in TemplateContext constructor which wasn't correctly removing duplicate "/"

characters.
9 Fixed bug in SimpleJSONTemplateStructureProcessor.finish() which wasn't keeping the

adjustment to the indent variable.
10 Fixed issue with SimpleTemplateTable.hashCode() which was not correctly hashing the array.
11 Updated repeating section processing to correctly handle more complex cases of repeating and

variable references. This also fixes a corner case problem with <<pageBreakNotLast>> not
working after an internal <<rs_a.b.c>>blah<<es_>> upset the indexing.

12 Fix to writing in-document errors into header and footer (some were hiding).
13 Updated bookmark and image processing to be able to use a bookmark that appears just after

the image frame rather than wrapping the image. This helps with imports of Docx files in LO5
and looks like it helps with DOC files where the image has a different wrap mode.

14 Corrected processing of [F-L] type range directives which were doing the wrong thing under
some cases.

15 Updated stepping and indexing processes - allows more flexible ranges e.g. [1,2,1,1,2].
16 Improved error messages from template-functions - provide function name in message.
17 Fixed issue resulting in corrupt documents when new line characters in data were mixed with

html-like (, <u>, etc.) directives.
18 Fix to HTML injection where <<html:xxx>> fields being last element in a

paragraph could leave "repairme" message.

Page 9 of 51

[Older] Docmosis v4.3.0 Release Notes
Nov 2017

New Features / Changes

Change
1 Number Formatting more control over Locale

The “numFormat” template now supports a new optional parameter to be able to enable /
disable the application of the specified Locale when parsing the supplied data:

 <<{numFormat(value, outputFormat, locale, applyLocaleToInput)}>>

The default behavior is to apply the locale to both the input and output, however this is
incorrect in some circumstances.
For example:

 <<{numFormat(‘0.0257’, ‘#.##0,##’, ‘nl’)}>>

Incorrectly produces “257” because the “nl” locale is applied when parsing 0.0257 into a
number. This can now be corrected by disabling the parse-phase conversion:

 <<{numFormat(0.0257, ‘#.##0,##’, ‘nl’, false)}>>

So the correct result (“0,03”) is produced.

API Changes
The following API changes should be noted

Class / Interface Change
DataProviderBuilder addJSONFile() method now assumes UTF-8 data in the given file.

Bug Fixes / Technical Changes

Change
1 Improved template-expression processing:

 - processing of unary operators (NOT in particular)
 - processing of more complex logical expressions - booleans handled better.

2 Improvements to streams dealing with UTF-8 content
3 Improved shutdown process with regards to closing the stderror stream and possible blocking

scenario.
4 Improved document processing when merging templates and injecting HTML content to handle

Page 10 of 51

Change
more complex cases involving page layout changes and large tables. The result is the layout is
more consistent with the templates involved.

5 Improved issue with LibreOffice 5 installations on Windows platforms where OpenGL processing
could cause DocX processing in particular to fail.

6 Improved barcode processing to report errors if barcode is longer than 200 chars.
7 Fix to another corner case of plain text fields not being recognized where expressions where

using the “>” greater than operator.
8 Template processing improved with fixes for complex scenarios where errors in templates were

unable to be reported and would result in a general failure to process the template instead of
correctly indicating the error in the template.

9 Fixed issue where blank “fillin” fields in Word templates were being raised as a general error
with no helpful specifics.

10 Fixed template processing error where a table contained repeating rows then a conditional row
directive but with no rows inside the condition.

11 Improved “null” error message when a problem occurs processing a template so that
implementation can be corrected.

Page 11 of 51

[Older] Docmosis v4.2.0 Release Notes
Jun 2017

New Features / Changes

Change
1 Comments in Templates

The templates can now contain comments. There are two sets of delimiters:

<<## and ##>> and <</* and */>>

As an example:

<<## The following section of the template is regarding xxx ##>>
Normal template <<information>>

Comments can span multiple lines:

<<##
 The following section of
 the template is regarding xxx
##>>
Normal template <<information>>

The two sets of delimiters mean that comments can be nested (one type of comment within
another) which can help during development. The following illustrates some normal content
with comments being completely commented out by the outer comment delimiters:

<</*
<<## The following section of the template is regarding xxx ##>>
Normal template <<information>>
<<## The following section of the template is regarding xxx ##>>
Normal template <<information>>

 */>>

See the Docmosis Template Guide for more details.

Page 12 of 51

Change
2 Optional Paragraph Fields

When a normal template field has no data, the paragraph containing the field remains in the
document. For example:

<<addressLine1>>
<<addressLine2>>
<<country>>

Would create:

5 Hasler Rd

Australia

leaving a blank line if there was no data for “addressLine2”. Optional paragraph fields
(identified by the prefix “op:”) remove the containing paragraph if there is no data:

<<addressLine1>>
<<op:addressLine2>>
<<country>>

So the same data would result in the more desirable:

5 Hasler Rd
Australia

Optional fields also help with numbered and bullet lists, removing redundant items if the related
data is not present. Optional paragraph fields always remove entire paragraphs so can remove
multiple lines from documents.

See the Docmosis Template Guide for more details.

3 PDF Form Fields can be Pre Filled

Templates (ODT format templates only) can create Fillable PDF form fields and pre-populate
them. This means that completed or semi completed electronic PDF forms can be generated.

See the Docmosis Template Guide for more details.

API Changes
The following API changes should be noted

Class / Interface Change

Page 13 of 51

Bug Fixes / Technical Changes

Change
1 Fixed issue where dynamic images in repeating sections would not render when using versions

of Libre Office after version 5.0.
2 Fixed issues where Libre Office versions after 5.0 would not process a template that was open

and modified.
3 Improved diagnostics logging for 32-bit / 64-bit mismatch between Java and Libre Office
4 Improved error message when missing section ends are detected
5 Increased plain text default max length from 150 to 1024 characters to support long template

expressions
6 Fixed corner-case “null” error when processing complex tables with varying numbers of columns

in rows that are repeating.
7 Fixed some character stream outputs which were not writing in UTF-8 explicitly.
8 Improved date parsing to fall-back if performing “Strict” matching and strict matching fails. This

provides date parsing that succeeds correctly even when ambiguities are present.
9 Fixed HTML injection issue where inserting blank HTML into a table would leave a “repairme”

indicator
10 Improved document loading to explicitly disable macros in templates when loading.

Page 14 of 51

[Older] Docmosis v4.1.0 Release Notes
Aug 2016

New Features / Changes

Change
1 Date Rendering has “sticky” timezone.

The built in “DateRenderer” and “DateFormat” functions now use the timezone of the input date
format (where timezone is provided) to assist with the output formatting. This avoids accidental
conversion to a different timezone than the given timezone. Previously the output timezone
would be the default for the application environment.

For example, if the input data format specifies timezone CST, then the output format implicitly
uses CST also.

Legacy behavior can be enabled by setting:
 docmosis.renderer.dateDisableTimezoneDataPersistence=true

2 Literals Parsing Improved.
Field processing has been enhanced to allow quoted constants to contain arbitrary content. eg
(‘abc.def’). Previously the period (‘.’) character would cause the intended literal to be split.

3 Docx Enabled by Default.
Docx processing is now enabled by default. This requires LibreOffice which has DOCX support, or
the ODFConverter to be used if using Open Office.

4 TIFF Image Support.
TIFF images are now supported in the templates and data streams.

5 New toAlpha(), toAlpha2(), toRoman() Functions.
New number formatting functions toAlpha, toAlpha2, toRoman have been added to allow
Docmosis to support numbering itself. This means that Docmosis can provide numbering in
different formats based on the current index:
 <<rs_items>>
 <<{toAlpha($itemnum)}>>). This is an item
 <<es_>>

Would produce output like:
 a). This is an item
 b). This is an item
 c). This is an item
 d). This is an item
 …

Page 15 of 51

Change

toAlpha() maps numbers to a, b, c…, y, z, aa, bb, cc, dd etc. For example:
toAlpha(1) => a
toAlpha(26) => z
toAlpha(27) => aa
toAlpha(28) => bb

toAlpha2() maps numbers to a, b, c…, y, z, aa, ab, ac, ad etc. For example:
toAlpha2(1) => a
toAlpha2(26) => z
toAlpha2(27) => aa
toAlpha2(28) => ab

which is the same as toAlpha() except when hitting double letters.

toRoman() maps numbers to Roman Numerals. For example:
toRoman(1) => i
toRoman(26) => ii
toRoman(27) => xxvii
toRoman(28) => xxviii

Barcodes supported by default:
- Code 128
- Code 39
- ITF 14
Adding a barcode is easy and quite
configurable. See the Docmosis Template
Guide for details.
You will also need barcode4j.jar (from
(http://barcode4j.sourceforge.net/).

API Changes
The following API changes should be noted

Class / Interface Change
ConverterPoolGroupStatus New public method getUptimeSeconds()to provide the

uptime for Docmosis as required.
XMLNodeFilter,
StringInterceptor,
Base64StringInterceptor

Added to Javadoc API documentation.

DocumentConverter updated Javadoc to state explicitly the
IllegalArgumentExceptions it throws.

Page 16 of 51

http://barcode4j.sourceforge.net/

Bug Fixes / Technical Changes

Change
1 Fixed bug in FileUtilities where unzipping a zip file with sub folders was failing because the

sub-folders were not being created.
2 Improved field detection where plain text fields near the bottom of a page could be left

unrecognized.
3 Updated bootstrapping to work under windows Service accounts.
4 Fixed issue with borders working with stepped repeating rows (ie when using the :stepN

directive)
5 Fixed bug where injecting html that was simply a table would leave the "repairme" text

behind.
6 Fixed issue where table borders and other style information was lost for some simple tables

where <<rr_>> or <<ref:>> fields existed, but no tables in the document had lookup fields.

7 Reduced diagnostics logging for the ExpressionFunctionAdapter to make sure that when a
processing error occurs, the message doesn't contain the package and class of the exception.
This makes the message more meaningful to the user.

8 Updated evaluator to not spit out same message about overridden functions every construction.
9 Fixed NPE in table analysis where conditional column was spanned. This could show up as an

error with message “null”.

Page 17 of 51

[Older] Docmosis v4.0.3 Release Notes
Dec 2015

Please note: html-like markup now defaults to enabled (see
docmosis.populator.field.markup.process details below).

New Features / Changes

Change
1 If / Else / Else-If Support in Conditional Sections

Simple “else” looks like this:
<<cs_true>>
true
<<else>>
false
<<es_>>

“else-if” is written like this:
<<cs_isPerson>>
 I have a person
<<else_isPlant>>
 I have a plant
<<else>>
 I have something I didn’t expect
<<es_isPerson>>

Conditional Sections Support the new Expression Syntax (described below)
Eg:

<<cs_{val < 10.0}>>
Low value = <<val>>
<<else_{val > 100.0}>>
High value = <<val>>
<<else>>
Nominal value = <<val>>
<<es_>>

2 New Expression Engine
A new expression engine has been added that improves computational capabilities of templates.
Operators and functions can be applied to String and numeric data. The following lines
summarize the way this affects the templates.

Expressions in Docmosis templates are still delimited by the braces (“{“ and “}”) characters.
Expressions can now include:

 Precedence using the brackets “(“ and “)” characters
 Mathematical expressions
 Mathematical and String functions
 Boolean logic

Page 18 of 51

Change
3 Direct Expression Evaluation

Fields which are expressions can be used to insert data into documents. For example:
<<{1 + 2 + 3}>>
<<{round(val/100,2)}>>%
<<{titleCase(firstName + ‘ ‘ + lastName)}>>

4 Assignment of Expressions to Variables
Variables can now be assigned the results of expressions: << $m={expr} >>
Eg. <<$m={round(1+ceil(2*3.5))}>>

round(1+ceil(2*3.5)) = <<$m>>

5 Boolean Logic
<<cs_{val1 || (val2 && val3)}>>
val1 is true or both val2 and val3 are true
<<es_>>

6 Maths functions
Typical math functions are supported.

Eg. <<{max(4.522, 4.5)}>>

The round() function has been extended to support an optional precision:
<<{round(1.236)}>>
<<{round(1.236, 2)}>>

The precision also pads:
<<{round(1.2,5)}>>

7 String Functions
charAt, compareTo, compareToIgnoreCase, concat, endsWith, equals, equalsIgnoreCase,
indexOf, lastIndexOf, length, replace (character replacement), startsWith, substring,
toLowerCase, toUpperCase, Trim, map, titleCase, split,
eg:

<<{equals(‘a’,’b’)}>>
<<{indexOf(‘abc’,’b’)}>>
<<{startsWith(‘this is’, ‘this’)}>>
<<{titleCase(‘joe blogs’)}>>

Page 19 of 51

Change
8 Formatting Functions

numFormat and dateFormat functions have been created to perform numeric and date
formatting functions. These functions are based on the similarly named FieldRenderers that
already existed in Docomsis.

numFormat(<value>, <format>[, <locale>])
<<{numFormat(value1, ‘###,###.00’)}>>

dateFormat(<value>[, <output format>[, <input format>]])
<<{dateFormat(value1, ‘dd/MM/yy’, ‘dd-MMM-yyyy’)}>>

9 Operators
The well known operators are supported:

 () + - * / % + - = == != < <= > >= && || !

10 XML population has been updated to allow "\r" to result in paragraph insertion (in addition to "\
r\n" and "\n"). This helps XML data processing where the xml contains this type of new lines.

11 Logging is by default quieter now with more logging information moved to DEBUG/FINE level.
12 Hyperlink processing has been updated to be able to use variables and variables set from

expressions. The hyperlinks are now expected to be of the format
<<link:xxx>> but the <<link_xxx>> format is still supported.

13 Docmosis can be managed without configuration files. The new Configuration class provides
an api for controlling settings:

Configuration config = Configuration.standard();
config.setConverterPoolConfiguration("1");
config.setOfficeLocation(loInstallPathStr);
config.setKeyAndSite(siteStr, keyStr);
SystemManager.initialise(config);

14 Sub-templates can now set template-variables that are visible to the “master” template and
subsequently processed templates.

15 Updates have been made to allow a load balancer to sit between Docmosis and it’s remote
converters.

16 String data that is provided is now automatically base64 decoded into images if the string data
starts with the sequence “image:base64:”

API Changes
The following API changes should be noted

Class / Interface Change
Configuration New Configuration class provides configuration-file-free

management of docmosis configuration.
DataProviderBuilder core - added new methods to DataProviderBuilder to allow "tabular

data" to be added easily given a Map[] or a String[][][].

Page 20 of 51

Class / Interface Change
DataProviderBuilder New methods for inserting StringInterceptors and getting the list of

active interceptors. These interceptors can manipulate data as it is
added to the data provider (eg turning base64 image data into
binary images).

SystemManager Exceptions have been simplified for startup. Now the
RuntimeException StartupException if a problem occurs during the
startup sequence and sub-classes of the StartupException allow
problem-specific handling.

RemoteConverter
supersedes
RemoteConverterTerminus

RemoteConverterTerminus is now superseded by RemoteConverter.

FieldDetails The FieldDetails class has a new method getDataProviderLineage()
which provides access to the current DataProvider, its parent,
grandparent etc. This means broad data access is possible in
custom FieldRenderer instances.

Bug Fixes / Technical Changes

Change
1 Improved hyperlink insertion to deal with being given blank data. This was corrupting DOC

output.
2 Fixed DocumentConverter which was leaking BasicDocuments and relying on finalizer to cleanup
3 Updated LocalOpenOfficeConverter which was hanging onto the inputstreams from spawned

docx converters.
4 Updated OpenOfficeServerLauncher to clean up launched Processes better.
5 Updated field parsing to handle more cases where set-variable fields occurring in redundant

paragraphs (blank lines) was causing parsing errors.
6 Improved injection of errors into the document (in “dev” mode):

- Errors not being visible in the document
- stopping template errors highlighting in red

7 Improved the performance and accuracy of JSON data in DataProviders. It was converting
to/from String unnecessarily AND numeric values (like 100.0) were becoming 100.

8 Improved JSON data provision for anonymous arrays (arrays that have a list of values without
keys). Internally, the new key "" is used for items that are anonymous which fits current data
provision perfectly - and is semantically a good fit.

9 Improved debug dump toString() of MemoryDataProvider to show blank keys.
10 Improvide population of <<rs_$this>> and <<rs_$current>> to work with JSON anonymous

arrays of arrays.
11 Updated analysis to detect when overlapping sections are caused by an over-zealous image

bookmark and raise a better error message. This occurs when the bookmark captures more
than just the image so other content could be accidentally removed from the result.

Page 21 of 51

Change
12 Updated field processing in numbered and bullet lists. Removes the default assumption that a

bullet list with a field in it is intended for repetition and makes it much more "normal".
13 Added configurable diagnostics logging to the DateRenderer
14 Increased the default window size for xml processing for templates with large/complex

paragraphs particularly in docx format.
15 Fixed issue where hidden ("_GoBack") bookmarks created by new versions of word (Mac) were

causing blank paragraphs to be left behind.
16 Updated default settings to use more memory during template upload (4k to 8k) analyzing

templates but improve performance.
17 Updated error handling for when a start or end tag is in a list (but not the matching tag) -

causing the related other tag to be lost/remote
18 Updated MemoryDataProvider to delete any created temp files for images when the same

image is set again (overwrite)
19 Updated XML dataprovision to ensure the StringInterceptors are applied for XML attribute

values.
20 Fixed issue where looping over including sub-templates more than 2 levels deep would

incorrectly determine a cycle in template referencing and raise an error.
21 Updated number renderer to be able to take a second parameter which identifies the locale to

use when parsing/formatting the date.
22 Updated default settings to work with newer versions of LibreOffice on Mac OSX.
23 Set the plain text markup << and >> settings as the default so they don’t need to be specified in

any configuration explicitly.
24 Fixed issue with DataProviderBuilder.addStringInterceptor() methods which only worked for first

addition.
25 Added capture and debugging of time spent waiting for the converter at the remote end point

to help with performance diagnostics when using remote converters.
26 The license key format has changed.
27 Fixed a corner-case failing to process documents with a conditional section being started in one

bullet/list item and being completed in a following paragraph which was not a separate
bullet/list item.

28 converterPoolConfig.xml has been simplified:
- easier to specify “remote” vs “embedded” converters
- embedded converters can be launched with a single count=”n” setting rather than referring

to soffice/soffice.exe n times.
29 HTML-like processing of data values is now enabled by default:

 docmosis.populator.field.markup.process=true

whereas it was previously disabled by default.
This processing means the ,<i>,<u> and <bgcolor> tags can be embedded in text data to
perform some html-like changes. This feature is separate from HTML-injection which is always
treated as HTML.

30 The location of the “template store” which is a file-system cache of analysed templates now

Page 22 of 51

Change
defaults to “./templateStore”. Previously it would default to a temp directory meaning if not
set, it would not persist across executions. The default property is now:
 docmosis.template.store.location=./templateStore

31 The converter pool configuration property now defaults to “converterPoolConfig.xml”.
Previously it had no default and would be typically set to this (now-default) value by all users.
The default property is now:
 docmosis.document.converter.pool.config.resource=converterPoolConfig.xml

Page 23 of 51

[Older] Docmosis v3.3.0 Release Notes
Jan 2015

New Features

Change
1 New HTML-injection feature. The new tag:

 <<html:myData>>
will process the given data as html and render the html into the document.

So, the following HTML:
<p style="border:1px solid orange; width:100%">this is the beginning of html content</p>
<h1>This is H1</h1>
The heading styles come from the template by default. This H1 heading comes from the
template.
<h2>This is H2</h2>
This H2 is simply a default style from the template also.
<h3 style="color:red">This is H3</h3>
<p style="width:100%">
We made the above H3 red in the HTML with local style. Interesting.
Local styles are important.
</p>
<table width="100%"><tr>
<td style="text-align:center;border:1px solid gray;background-color:#555555"><span
style="color:white">Cell 1</td>
<td style="text-align:center;border:1px solid gray;background-color:#555555"><span
style="color:white">Cell 2</td>
<td style="text-align:center;border:1px solid gray;background-color:#555555"><span
style="color:white">Cell 3</td>
</tr><tr>
<td style="border:1px solid gray">And again</td>
<td style="border:1px solid gray">more html</td>
<td style="border:1px solid gray">and even more</td>
</tr><tr>
<td style="border:1px solid gray"> </td>
<td style="border:1px solid gray">10.42</td>
<td style="border:1px solid gray">Summary</td>
</tr></table>
<p> </p>
<p style="border:1px solid orange; width:100%">this is the end of html content</p>

Will render into a <<html:myData>> field like this:

Page 24 of 51

Change

2 Image Alt Text can now be dynamically changed. Adding a Docmosis tag to the alt-text of an
image will cause document processing to process the tag and update the alt-text.

3 Accessibility updates for PDF output. To allow PDF documents to be more useful to low-vision
users. The API call:
 ConversionInstruction.setPdfTagged(boolean)
causes the PDF result to have extra information (such as alt-text for images) which assist
accessibility-tools to present the PDF document to the user.

4 Improved document handling of document fields –bookmark cross-references will be updated
dynamically if they contain dynamic content.

API Changes
The following API changes should be noted

Class / Interface Change
ConversionInstruction New method setPdfTagged(boolean) to add extra

information to the PDF output for low-vision assistance.

Bug Fixes / Technical Changes

Change
1 Fixed a bug where multiple adjacent set-variable fields were causing an error in template

analysis.
2 Fixed a bug where template processing wasn’t allowing multiple nested conditional sections on

a single line with a Docmosis set-variable field.
3 Improved processing to stop blank lines being left in document after Docmosis content is

Page 25 of 51

Change
stripped.

Page 26 of 51

[Older] Docmosis v3.2.0 Release Notes
Sep 2014

New Features

Change
1 Improvements to the Java download:

- Library loading and class loading
- Confirguration and property setting
to allow docmosis embedded converters to be used by multiple applications deployed into
same Web or JEE container.

Particularly the new Configuration class allows properties to be set/overridden
programmatically.

2 New “step down” feature to allow templates to traverse data in steps and “down” first instead
of across first. This means data can be written down columns as well as across rows. This
applies to both repeating sections (eg “<<rs_items:step3down>>”) and to table rows (eg
“<<rr:items:step3down>>”).

For example, given a list/array of items
 [a,b,c,d,e,f,g]
the directive
 <<rr_items:step3Down>>
inside a table will create 3 columns of data and populate the first column top to bottom, then
move to the second and third columns:

a d g
b e
c f

Using the same data, the directive:
 <<rr_items:step2Down>>
inside a table will create 2 columns of data and populate the first column top to bottom, then
move to the second:

a e
b f
c g
d

Docmosis will automatically balance the number of rows to fit the given data into the desired
number of columns.

As with the “stepN” directive, the “stepNdown” directive allocates variables names $i1, $i2 … to
allow you to reference data in your array. For a “step3down” directive, $i1 will be the item for

Page 27 of 51

Change
column1, $i2 for column2 and $i3 for column3. In a table, the “items” data can be mapped to a
3 column down-first table as follows:

<<rr_items:step3Down>>
<<$i1>> <<$i2>> <<$i3>>
<<er_>>

Note that $i1, $i2 and $i3 are automatically created by Docmosis to reach the items to be
placed into the first, second and third column of the current row. The “items” data may be
simple data or they could be structured objects. If they are simple objects, the above template
example will render them as expected. If the “items” list contains structured objects, for
example person data, then the following shows how the name of the person can be referenced:

<<rr_items:step3Down>>
<<$i1.name>> <<$i2.name>> <<$i3.name>>
<<er_>>

3 There is a new tag <<noRowColoring>> (aka <<noRowColouring>>) which disables the automatic

row colouring feature of Docmosis when expanding repeating rows in a table. (sometimes table-
row colouring is not desirable).
The <<noRowColoring>> tag can appear in a table to disable it for that table. The tag can also
appear in the text body of the document which will disable the row colouring in all following
tables.

4 Dates, Booleans and Numeric data passed in as textual information (such as with XML or JSON
data) can now be re-formatted by the template. This has been achieved by extending the
renderers to also be able to parse data items and even according to specified formats.

For example, dates:
 <<myDate{renderer=date(‘dd/MMM/yyyy’)}>> will render myDate into dd/MMM/yyyy
And if your date data is in a special format, you can tell Docmosis how to parse it with a second
parameter:
 <<myDate{renderer=date(‘dd/MMM/yyyy’,’EEE MMM dd HH:mm:ss zzz yyyy’)}>>

And booleans:
 <<myItem{renderer=boolean(‘yn’)}>> will render myItem into y or n values

And numbers:
 <<myVal{renderer=number(‘$00.00’)}>> will render myVal into $00.00 style values.

Please see the template guide for more information about the features of the renderers.

Page 28 of 51

Change
5 Java API and Command Line raw Conversion is now provided by a new API Class:

DocumentConverter. This new class does not perform data population based on a template, it
is simply to be used to convert between formats (eg ODT->PDF, or DOC->PDF). The
DocumentConverter can convert documents at scale using the built in features of Docmosis for
scaling document production.
A command-line version is provided as shown by example7 in the Docmosis-Java download.

Please see the API for more information.
6 Two new built-in variables have been created:

 $rownum
 $rowidx
These items present the current row number (or row index which starts from zero) when
repeating data. These new variables are handy when using the “step” functions which affect
the $itemnum and $idx variables.

API Changes
The following API changes should be noted

Class / Interface Change
Configuration New class allowing properties to be set programmatically.
SystemManager A new method:

 initialise(Configuration configuration)
has been added to allow Docmosis to be initialized with
programmatic configuration overrides.

DocumentConverter New class providing direct format conversion rather than document
production. Example7 in the Java download contains a command
line example of converting files to multiple formats

DateRenderer The built in date renderer has been extended to parse dates from
text data allowing text data to be interpreted and reformatted.
Various date formats are applied by default.

BooleanRenderer The built in boolean renderer has been extended to parse boolean
from text data allowing text data to be interpreted and reformatted

NumberRenderer New built-in renderer that can reformat numeric data, even when
that data is provided in text format.

Bug Fixes / Technical Changes

Change
1 Fixed issue where unusual configuration could result in infinite loops in data streaming
2 Fixed issue where occasionally a plain text field might not be recognized as a field in a docX

template.
3 Fixed issue whereby document-merging was not working with the latest “fresh” build of Libre

Page 29 of 51

Change
Office (4.3.0.4). Libre Office is correcting the bug but we corrected for it anyway.

Page 30 of 51

[Older] Docmosis v3.1.0 Release Notes
May 2014

New Features

Change
1 Reverse engineering support from Templates

The TemplateStructureExtractor and TemplateStructureProcessor classes have been
extended to allow sample data to be created for a given template. The list of fields, repeating
sections, images etc in a template can be obtained in a descriptive form for programs to use.

Implementations available by default:

 SimpleXMLTemplateStructureProcessor – describe a template in XML
 SimpleJSONTemplateStructureProcessor – describe a template in JSON
 JSONDummyDataTemplateStructureProcessor – create dummy data in JSON format that
can populate a template.

These classes allow application code to perform various operations based on knowing the
structure and fields of a given template including creating forms and creating examples of how
data structures should look .

See the Java API for more information (http://www.docmosis.com/resources)
2 Template Validation

Templates can now be run through the validation mechanism to detect errors without
registering them.
The new DropStoreHelper.validateTemplate() (also available in StoreHelper) method
processes a template to determine if there are any errors and returns a
TemplateValidationResult with error messages and suggested fixes.

See the Java API for more information (http://www.docmosis.com/resources)
3 “Stepped” Repetition

Repeating sections (<<rs_>>) and repeating table rows (<<rr_>>) directives can now "step"
through data in "chunks". This allows 1-dimensional data (eg a List or Array) to be transposed
into groups of 2, 3, 4 etc. For example, an array of images can now be laid out in the document
in pairs or triplets etc - controlled by the template and no need to change the structure of the
data.

See the Template Guide for more details (http://www.docmosis.com/resources)

Page 31 of 51

http://www.docmosis.com/resources
http://www.docmosis.com/resources
http://www.docmosis.com/resources

Change
4 Fields can Contain Spaces

Space-padded plain text fields are now identified and processed, eg << name >> (with spaces
around “name”) is still recognized as a field. This helps when using copy and paste of text into
fields where word processors may add padding.

This can be disabled with the property:
docmosis.analyzer.field.allowPadded=false

5 IndexOf() Supported for Strings, Lists and Arrays

The template may use <<name.indexOf(‘dave’)>> to get have the applicable indexOf()
operation invoked for String, List and Array data. For String data, indexOf(‘dave’) returns the
index of “dave” within the string data (or -1 if not found). For Lists and Arrays, indexOf() will
return the first index of the element equal to “dave” (or -1 if not found).

API Changes
The following API changes should be noted

Class / Interface Change
RenderRequest New method to take a template as an InputStream -

setTemplateStream()

TemplateStructureProcessor Added support for creation of data by adding “index” parameter to
the repeatBegin() and repeatEnd() methods.

Bug Fixes / Technical Changes

Change
1 fixed case where some unmatched section end tags ("<<es_") where not being detected and

flagged as an error
2 cleanup of some temporary files being left behind
3 fixed NPE when rendering RTF output on ODT templates with embedded chart objects
4 fixed issue that could cause corrupt document to be produced when trying to write error into

document.
5 fixed non-closure of some input streams during processing
6 Fixed possbile exception (NPE) raised when having a rr_ / er_ structure with no rows between.

Page 32 of 51

[Older] Docmosis v3.0.6 Release Notes
Dec 2013

New Features

Change
1 Built in DOCX support option (requires Libre Office rather than OpenOffice)

Libre Office 4 DocX support is improving and Docmosis has been upgrade to make some
improvements to the DocX result. Docmosis can use Libre Office to produce DocX directly by
setting:

 docmosis.converter.format.docx.internal.enabled=true

in the docmosis.properties file

The odf-converter (third party free system) is the alternative for DocX and is still likely to
produce better results in general, but requires a separate program to be installed.

2 Images are now bundled with HTML output

When the rendered document contains images and HTML output is chosen, the images are
bundled with the result into a ZIP file. This means that when the HTML result is viewed the
images are also displayed.

When rendering, if only HTML output is selected, then a HTML text result will be returned (ie no
images) by default. To provide the images, a ZIP result is required and this can be requested by:
a) Outputting in more than one format (eg HTML and PDF)
b) Requesting a ZIP for even a single result (the compressSingleFormat flag)

3 Improved Error Messages for Unsupported Output Formats

If the underlying office engine (Open Office or Libre Office) doesn’t support the requested
output format, then this is explicitly detected and stated in the error messages. This is
important in cases where one engine supports a format and another doesn’t (such as with
formats XHTML and DocX).

API Changes
The following API changes should be noted

Class / Interface Change
DataProviderBuilder JavaDoc updates for example code

Page 33 of 51

Bug Fixes / Technical Changes

Change
1 Added UTF-8 decoding of site key from license to allow multi-byte characters in naming
2 Corrected issue where some error message suggestions were displaying XML

(eg <text:s text:c="1"/>)
3 updated to leave templates IN the analyzed stream when info about the image can't be

determined. Images were being stripped previously.
4 added new (property-disabled) way to treat templates with spanning-rows with "allow row to

break" disabled as an error in the template. This will help where such templates are able to
crash Open Office and hence fail to render.

The property is disabled by default:

 docmosis.analyzer.error.nonBreakableRowSpanningRowsFatal=false

since it is rarely an issue.
5 fixed issue where preserved corrupt file was being cleaned up
6 Updated bundled docmosis.properties file to contain examples of settings where Libre Office 4 is

in use.

Page 34 of 51

[Older] Docmosis v3.0.5 Release Notes
Jul 2013

New Features

Change
1 Automatic processing of DOCX templates by DropStoreHelper

DropStoreHelper previously ignored DocX files when loading templates.

2 API additions to Reverse Engineer from Templates

New classes TemplateStructureExtractor and TemplateStructureProcessor provide the ability to
interpret the structure of loaded templates and perform arbitrary processing. The
SimpleXMLTemplateStructureProcessor is an example implementation that dumps the template
structure into an XML format.

3 XML Data Provision Updates

When providing data via XML, text data is loaded in a new way to ensure that data that may
have an ambiguous meaning is available under both interpretations. For example:

<data>
 <a>some data
</data>

Will be loaded into the DataProvider such that a field in the template:
 <<data.a>>
will populate with “some data” (this is the new behavior). The following template structure will
also populate with “some data”:
<<rs_data>>
 <<rs_a>>
 <<value>>
 <<es_a>>
<<es_data>>
(which is the same as the previous behavior). This simply means XML processing should behave
more intiuitively.

Page 35 of 51

API Changes
The following API changes should be noted

Class / Interface Change
TemplateStoreFactory The method getStore(String) can be passed a custom TemplateStore

implementation to load. The parameter format is:
custom:<impl class>[:param]
for example:
custom:com.MyStoreImp
or
custom:com.MyStoreImpl:saveLocation1

Bug Fixes / Technical Changes

Change
1 Improved plain text field processing where some fields were not being detected particularly with

DOCX format templates.
2 The default example value for the property docmosis.converter.format.docx.external.path in

docmosis.properties file has been corrected for linux platforms. It was previously referencing
the odf-converter-integrator rather than odf-converter.

3 Javadoc corrected where “wingdings” was being called “windings”.
4 Fixed NPE when <bgcolor> directive in data was used for docmosis fields that were outside of a

table in the template.
5 Fixed a problem where Uploading a template cause cause issues with the converter pool if the

Upload crashed OpenOffice

Page 36 of 51

[Older] Docmosis v3.0.4 Release Notes
Feb 2013

New Features

Change
1 Improved Literals Processing

Processing of literal values in template fields has been improved. Docmosis can now process
numbers, Strings, boolean (true and false) and null values as constants when assigning variables
or creating expressions. For example, the following are valid template fields:

<<cs_{name='Fred'}>> test if the value for key "name" is "Fred"
<<cs_{name=null}>> test if the value for key "name" is null (undefined)
<<cs_{score<10.5}>> test if the value for key "score" is less than 10.5
<<$m=false>> set the template-variable "$m" to false
<<cs_{$m=true}>> test whether the value for template variable "$m" is

true.

API Changes
The following API changes should be noted

None.

Bug Fixes / Technical Changes

Change
1 Added default support for OpenOffice installed on Debian Platforms
2 Added default support for LibreOffice 3.6 on linux platforms
3 Lowered default number of document retries to 1 since the Open Office and Libre Office

platforms are stable enough that retrying is rarely required
4 Updated field parsing to handle "smart quotes" created by Word 2010 and later
5 Allow template-variables to be set in the cr_ and rr_ rows of tables (where previously they were

quietly ignored). This allows variables to be set in rows that are removed during rendering to be
defined and used in subsequent processing.

6 Fix - ensure setting the cell colouring via the data only takes effect if the
"docmosis.populator.field.markup.process" property is set to true

7 Improved detection of plain text fields where tag contains a quote (') character
8 Fixed issues where only *.docx named files were running through external DOCX converter (and

not *.dotx files)

Page 37 of 51

[Older] Docmosis v3.0.3 Release Notes
May 2012

New Features

Change
1 HTML-Like Text Markup

The HTML-Like text markup introduced in 3.0.1 has been extended to allow DATA to control the
background colour of table cells. If HTML-like markup is active, then any template-field in a
table cell can set the background colour by specifying <bgcolor="#rrggbb"/> as the
beginning of the data for the field.

For example, given a template field inside a table:
 <<myName>>
If the data contains for key myName contains:
 <bgcolor="#ff0000"/>James
The field will be populated with the text "James" and the table cell colour will be set to red
(#ff0000).

The <bgcolor> tag must be the first item in the data. There doesn't need to be any textual
data to match, so you could have the data and the colour in separate fields. As an example the
template might look like this:
 <<myName>><<cellColour>>
And the data could contain have:
 myName => James
 cellColour =><bgcolor="#00ff00"/>
and the end result would be a green table cell containing the text James.

API Changes
The following API changes should be noted

None.

Bug Fixes / Technical Changes

Change
1 Fixed issue where remote converters could be stalled when something other than Docmosis

connects and does the correct handshake.
2 Improved plain text markup processing to capture some cases where Docmosis thought the

template was invalid.

Page 38 of 51

[Older] Docmosis v3.0.2 Release Notes
April 2012

New Features
None.

API Changes
The following API changes should be noted

Class / Interface Change
DataProviderBuilder Improved handing and error reporting for null keys and values.
RenderRequest Improved javadoc for interaction with ConversionInstruction
ConversionInstruction Improved javadoc for getConversionFormats() and some PDF-specific

methods. Added some new PDF-specific public constants.

Bug Fixes / Technical Changes

Change
1 Fixed issue reducing parallel processing using Libre Office. Did not affect Open Office.
2 Improved data processing to correctly compare null and '' (empty string) values between

templates and data.
3 Fixed NullPointerException when setting adding null image streams and files and improved

messages when null keys used in DataProviderBuilder add() methods.
4 Fixed issue where right-border could disappear when right most columns stripped out of a table

using conditional columns and repeating rows. Fixed NullPointerException when a
ConversionInstruction passed that has no output formats (ConversionFormat) specified. API
documentation improved for ConversionInstruction.

5 Fixed processing to allow RenderRequest settings to work with the contained conversion
instruction for determining output formats. API documentation improved for RenderRequest.

6 Updated the shutdown process to provide a grace period for sub-systems to shut down. This
fixes spurious errors/warnings during the shutdown process.

7 Updates to some default settings for performance improvements:
 - io read block size 4k -> 8k
 - in memory processing limit 8k -> 16k
 - worker pool max size 10 -> 20
 - converter refresh 100 -> 300
 - working window for analyser 20 -> 40

Page 39 of 51

[Older] Docmosis v3.0.1 Release Notes
March 2012

This release is for most customers a drop-in replacement for the 2.2.2 release. Few parts of the API have
incompatible changes, and specific notes are as follows:

1. A new license key is required. License keys for previous versions of Docmosis are not valid. Please
visit the Docmosis web site to find out how to obtain your key. If you have purchased a license key
within the past 12 months for Docmosis, you will be allowed to upgrade to the new version free of
charge.

2. Plain text markup in the templates is turned on by default in the docmosis.properties file that
comes with the 3.0.1 release. If you are an existing docmosis user, you will need to add the new
properties to your docmosis.properties file if you wish to take advantage of plain text markup. See
the new features below for details.

3. HTML-like interpretation of data is disabled by default. This can be enabled in your
docmosis.properties file. See the Section below about HTML-like markup.

New Features

Change
1 Plain Text Markup

Docmosis fields/placeholders can now be written into the document using plain text rather than
Open Office Fields or Word merge Fields. This can make template maintenance much simpler.

The feature is turned on by default in the downloaded Docmosis bundle. The default delimiters
are << and >>. If you are an existing Docmosis user, can add the following properties to your
docmosis.properties file:

docmosis.analyzer.field.plainText.prefix=<<
docmosis.analyzer.field.plainText.suffix=>>

Example1 in the download bundle shows plain text markup in use. It is the same as Example2
except Example1 uses plain text markup and Example2 uses merge fields.

Please see the latest Docmosis Template Guide in the Support section of the Docmosis site for
more information.

2 Image Scaling Options

The template can now indicate three modes of operation when placing images:

1. stretch - images are stretched to fit the template placeholder
2. fit - images are scaled to fit the template placeholder but maintaining the original aspect

ratio

Page 40 of 51

http://www.docmosis.com/support

Change
3. default - images will be scaled according to the chosen default behaviour which can be

overridden on a per-render basis.

The use of "bm_xxx" to identify an image is now deprecated and replaced by:
1. img_xxx - insert the image xxx using the default setting (stretch is the pre-defined

default). The stretch/fit behaviour can be changed at the system level using the
property:
 docmosis.analyzer.image.scaling.default=fit|stretch
The behaviour can also be overridden when calling the
DocumentProcessor.render(RenderRequest) method.

2. imgstretch_xxx - insert the image xxx stretching the image in x and y directions to
fit the template placeholder entirely.

3. imgfit_xxx - insert the image xxx scaling the image to fit the template placeholder,
but preserving the aspect ratio of the image.

Please see the latest Docmosis Template Guide in the Support section of the Docmosis site for
more information.

3 New PDF and Word Controls

Various new features can be specified (see API changes below) for PDF or Word output including
1. Password Protect
2. Archive Mode and default view for PDF
3. PDF Watermarks

Please see the Docmosis Java API or the Docmosis Web Services Guide in the Support section of
the Docmosis site for more information.

4 XML and JSON Data Support

The engine can now work directly with XML and JSON format data (via the
DataProviderBuilder) class.

Please see the Docmosis Java API in the Support section of the Docmosis site for more
information.

5 HTML-like Text Markup

String data can now use a limited set of HTML-style mark-up. This allows bold, italic and
underline styles to be applied to a single word, phrase or paragraph.

For example, your data can contain:
This is bold

Which will be rendered as

Page 41 of 51

http://www.docmosis.com/support
http://www.docmosis.com/support
http://www.docmosis.com/support

Change
This is bold

This is disabled by default and is controlled by the property:
docmosis.populator.field.markup.process=true

It can be overridden programmatically using the new RenderRequest object for the
DocumentProcessor API (see API Changes below). See also example1 and example2 in the
download which show it in operation for the <<introduction>> placeholder.

6 Experimental DocX Support

OpenOffice and LibreOffice currently perform poor conversions to and from docx format files.
We have enabled Docmosis to interact with the ODF Converter
(http://sourceforge.net/projects/oci/) which performs much better conversions.

To use docx support, set the following property in docmosis.properties to indicate where the
ODF Converter is installed:

docmosis.converter.format.docx.external.path

eg:
docmosis.converter.format.docx.external.path=c:/program files (x86)/odf-

converter-integrator/OdfConverter.exe

You may find it more convenient to install the ODF Converter Integrator
(http://katana.oooninja.com/w/odf-converter-integrator) which provides more cross-platform
options. Please note the ODF Converter Integrator may reconfigure your host to open docx files
with itself rather than Microsoft Word.

API Changes
The following API changes should be noted

Class / Interface Change
DocumentProcessor New render method:

 render(RenderRequest request)
allowing all and extended features to be set when rendering. It is
intended to be the primary method for use in future.

The RenderRequest object allows various extra settings
including:
 - using multiple Template Stores
 - overriding default behaviours including
 - image scaling behaviour
 - error handling behaviour
 - HTML interpretation of text data

DocumentProcessor render methods now return a result object which includes the
number of pages and the size of the document produced.

ConversionInstruction Many new setter methods to allow format-specific properties to be
controlled including:

Page 42 of 51

 PDF password protect
 PDF watermarking
 PDF archive mode (PDF/A-1a)
 PDF default view settings
 PDF image compression
 WORD password protect

DataProviderBuilder New methods to support XML and JSON format data
TemplateIdentifier A new constructor (String, String) to make it easy to set the name

and context at the same time.
ImageScalingDefault Class defining the constants that can be used for image scaling
TemplateStoreFactory The method getStore(String) has been removed. A single

template store location is expected to be configured using system
properties.
New methods have been added to allow store instances to be
obtained with overriding settings for:
 - whether template errors are fatal (loading into the store results in
an exception) or allowed (templates are stored even with errors
which can then be shown when rendered)
 - delimiters to use when analysing templates

Bug Fixes / Technical Changes

Change
1 Improved processing and reporting of errors in template tables where rows marked as heading

rows are used.
2 Improved handling of TemplateIdentifiers and TemplateContexts to ensure Engine,

Cache and DropStoreHelper work consistently to identify a template. This corrects a
problem where a template update would not be dynamically picked up when rendering.

3 Fixed issue when rendering in multiple formats at the same time - images may not be rendered
into final document.

4 Fixed issue where "File In Use" could occur when Update a template on the fly
5 Field Renderers now can be applied in Headers and Footers
6 Fixed NPE that could occur when including an external template and the current template

context was "" (empty).
7 Community edition limited to 200 documents per day
8 Improved processing of consecutive spaces which were sometimes condensed to a single space.
9 A refLookup that could not find the template name could result in an error that was not

meaningful.

Page 43 of 51

[Older] Docmosis v2.2.2 Release Notes
January 2011

New Features

Change
1 New Break Fields

Docmosis now provides 4 fields as a neater way to insert page and column breaks.
The first forms will produce a page and column break (for multi-column documents)
respectively:

 «pageBreak»
 «columnBreak»

The second forms are for use within repeating sections and will insert the
corresponding break until the last iteration of the section:

 «pageBreakNotLast»
 «columnBreakNotLast»

The new fields can be used instead of or in conjunction with actual page and
column breaks in your template. Please see example4 in the download bundle
which shows an example use of «pageBreakNotLast».

2 Image Lookup Extended
Image lookup has been extended to match the facilities of textual data including
nesting (eg my.images.image1) and variables ($myImage)

3 Corrupt Templates are Detected Earlier
Previously if badly corrupted documents were used as templates (for example
empty files or incorrect format) then Docmosis would take minutes to identify this.
Now such templates are recognised sub-second.

4 Full-Justification Support for Multi-Line Data
Carriage returns/end-of-line sequences in data now result in the end of a paragraph
in the resulting document. This is particularly useful when using full-justified
paragraph formats which would previously display overly-spaced lines.

API Changes
The following API changes should be noted
Class / Interface Change
DataProviderBuilder New addJavaObject(Object, String, boolean) method has

been added to allow "forgiving" mode to be specified
during Java reflection for data.

DataProviderBuilder addJavaObject(Object) has been deprecated since it can
Page 44 of 51

mask other data and such behaviour is not obvious.

Bug Fixes / Technical Enhancements
Change
1 Improved processing and reporting of errors in template tables where rows marked

as heading rows are used.
2 Corrected logging of class name where Reflection fails to find any method related

to the template field.
3 Fixed issue where images were not substituting in headers under some conditions

Page 45 of 51

[Older] Docmosis v2.2.1 Release Notes
May 2010

New Features
None

API Changes
The following API changes should be noted
Class / Interface Change
DataProviderBuilder.addJavaObject(Object) This method has been documented as dangerous due to

its ability to hide other data.
addJavaObject(Object,String) is the safe alternative.

Bug Fixes / Technical Enhancements
Change
1 Reflection now populates correctly from non-List Collections such as Set (eg

TreeSet) and Queue.

Page 46 of 51

[Older] Docmosis v2.2.0 Release Notes
April 2010

New Features

Change
1 Template Merging

Docmosis now allows templates to be referenced by other templates and the
templates will be merged at processing time. This allows templates to have
common content to be separated out into shared templates.
For example, if documents have a standard header layout, they can reference a
common header template using one of the two new Docmosis fields. This might
look like:

 «ref:header.doc»
or
 «refLookup:headerTemplate»

where the first field would pull in the template called header.doc into the current
template and the second field would look up the key “headerTemplate” in the data
provider to get the name of the template to pull in. See the Docmosis Template
Guide for more information and example5 in the download bundle for an example.

2 New Render Methods
The DocumentProcess class has new overloaded render methods to assist in
simplifying document generation. Most notably is the presence of a new Boolean
parameter to override the default behaviour of cleaning up the DataProvider after
the render. Reusing the data can be helpful if making separate render calls to
produce separate documents rather than a single call to produce a zip archive.

3 Reduced IO
Disk and Network IO has been reduced in the case where the Converters are on the
same host as the core engine.

4 Improved Error and Diagnostic Handling
a) 32/64 bit incompatibilities are detected and suggestions are reported. This

is helpful when using a 64 bit Java and there is no 64 bit OpenOffice (such as
on Windows and MacOSX).

b) Handshaking between the Docmosis core and the converters will report
versioning issues, status and environmental differences.

5 Improved docmosis.properties
The example docmosis.properties file has been re-organised to show the critical
properties first, better documentation and show some of the other important
properties.

Page 47 of 51

API Changes
The following API changes should be noted
Class / Interface Change
DocumentProcessor New renderDoc() methods allowing easier access to re-

using the same DataProvider between calls. Previously
only one method allowed this to be specified (within the
ConversionInstruction)

Bug Fixes / Technical Enhancements
Change
1 Repeating Table Rows now allow for conditional rows and hence keep border and

background styling features
2 Improvements to rendering errors into the resulting document in corner cases

where error was not reported
3 Improvements to ODT (OpenOffice Writer) template processing for end of section

detection.
4 Improvements to JavaDoc information

Page 48 of 51

[Older] Docmosis v2.1.1 Release Notes
February 2010

Bug Fixes / Technical Enhancements
Change
1 OpenOffice 3.2 support

OpenOffice has a great new release which has no serious bugs as far as Docmosis is
concerned. The previous two production releases (3.0.1 and 3.1.0) had bugs that
were not ideal for typical Docmosis use.
OpenOffice 3.2 changes a few things under the hood so Docmosis had to upgrade
to match.

2 New options to control the way Docmosis loads OpenOffice jars and native
libraries. This allows Docmosis to launch the Converters itself rather ("embedded
converters") rather than this requiring a separate script (eg runConverter.sh). This
means setup is simpler for smaller systems.

The launching works from within more Web Application Servers than before, such
as JBoss5, Glassfish etc. Note: using "embedded converters" implies you are
running everything on the same machine as opposed to a load-distribution
configuration.

To use embedded converters, update see the information in the example
converterPoolConfig.xml file.

The primary new property allowing control over the library loading is:

docmosis.openoffice.useCustomLoader=true|false
 This property defaults to false but if you have linkage errors, particularly when
using embedded converters, you can try setting this to true to load the libraries in a
different fashion.

3 The property template.store.location can now be left blank, in which case Docmosis
will create a temporary area to work with for the template cache.

Page 49 of 51

[Older] Docmosis v2.1.0 Release Notes
November 2009

New Features

Change
1 Hyperlink Insertion

Docmosis can now insert active hyperlinks into documents. A link placeholder is
inserted into the template using a name with a "link_" prefix. For example a field
 «link_myWebSpace»
will look up the data provider using the key "myWebSpace" and render the result as
a hyperlink. Further, the data provided can be delimited using a pipe symbol ("|")
to name the link differently from the address.
For example, given the field above, a data value of "http://www.mywebspace.com/
bluk" would be rendered as a hyperlink and display the text
"http://www.mywebspace.com/bluk" in the document. If the data value was
"mywebspace|http://www.mywebspace.com/bluk", the link would be rendered
into the document displaying the text "mywebspace".

See example1 in the download bundle to see it in action.

API Changes
The following API changes should be noted
Class / Interface Change
DataProviderBuilder addFile() methods now allow character encoding to be

specified.
StoreHelper New storeTemplate() method that can take an

InputStream as the source of the template rather than
just file-based templates.

DropStoreHelper New process methods to allow Zip and Jar files of
templates to be processed directly, or from URLs to
Resources from a class loader.

Bug Fixes / Technical Enhancements
Change
1 Expressions Enhanced - general improvements

i. default boolean true test
cs_{isFriend()} was previously invalid, but now evaluates isFriend() as a
boolean as expected.

ii. null tests supported
cs_{getAlpha()=null}

Page 50 of 51

iii. size() capability broadened
now also applies to any non-reflective data sources

iv. isEmpty() capability added
cs_{getFriends().isEmpty()}

2 Fixed issue where rs_, cs_ and es_ tags at the first line of a template page could
result in extra blank lines in output documents.

3 Added toString() to TemplateAnalysis implementation to allow dumping of analysis
information.

4 Fixed issue with nested anonymous er_ tags failing template registration.
5 Fixed issue with second and subsequent Tables Of Content/Tables of Figures etc

not being updated correctly.
6 Improved handling of java.sql.Time data type.
7 Subtle fixes to template caching and warnings for large templates
8 Fixes to DataProviderBuilder.addJavaObject(name, Object) so that it works with

Collection/Array data types and allows them to be referenced directly by the name
given.

9 The connection to OpenOffice will complain with a specific message about
unsupported Java version if the OpenOffice API is not compatible with the version
of Java in use.

10 Improved population of non-ascii characters to support multiple languages and
symbology.

Page 51 of 51

	Docmosis v4.5.0 Release Notes
	New Features / Changes
	API Changes
	Bug Fixes / Technical Changes

	Docmosis v4.4.2 Release Notes
	New Features / Changes
	API Changes
	Bug Fixes / Technical Changes

	Docmosis v4.4.1 Release Notes
	New Features / Changes

	New template functions:
	API Changes
	Bug Fixes / Technical Changes

	Docmosis v4.4.0 Release Notes
	New Features / Changes

	Support for Java up to version 11
	Support for LibreOffice 6
	Improved Error Handling in Dev Mode
	Improved XML and JSON Sample Data Generation
	New sentenceCase(), isBlank(), ifBlank(), and squote() Functions
	New Built-In Template Variables
	$quot - a single-quote character
	Improved Numbered List Processing
	API Changes
	Bug Fixes / Technical Changes

	
	[Older] Docmosis v4.3.0 Release Notes
	New Features / Changes

	Number Formatting more control over Locale
	API Changes
	Bug Fixes / Technical Changes

	
	[Older] Docmosis v4.2.0 Release Notes
	New Features / Changes

	Comments in Templates
	Optional Paragraph Fields
	API Changes
	Bug Fixes / Technical Changes

	
	[Older] Docmosis v4.1.0 Release Notes
	New Features / Changes

	Date Rendering has “sticky” timezone.
	Literals Parsing Improved.
	Docx Enabled by Default.
	TIFF Image Support.
	New toAlpha(), toAlpha2(), toRoman() Functions.
	API Changes
	Bug Fixes / Technical Changes

	
	[Older] Docmosis v4.0.3 Release Notes
	New Features / Changes

	If / Else / Else-If Support in Conditional Sections
	New Expression Engine
	Direct Expression Evaluation
	Assignment of Expressions to Variables
	Boolean Logic
	Maths functions
	String Functions
	Formatting Functions
	Operators
	API Changes
	Bug Fixes / Technical Changes

	[Older] Docmosis v3.3.0 Release Notes
	New Features
	API Changes
	Bug Fixes / Technical Changes

	[Older] Docmosis v3.2.0 Release Notes
	New Features
	API Changes
	Bug Fixes / Technical Changes

	[Older] Docmosis v3.1.0 Release Notes
	New Features
	Template Validation
	“Stepped” Repetition
	Fields can Contain Spaces
	IndexOf() Supported for Strings, Lists and Arrays

	API Changes
	Bug Fixes / Technical Changes

	[Older] Docmosis v3.0.6 Release Notes
	New Features
	Images are now bundled with HTML output
	Improved Error Messages for Unsupported Output Formats

	API Changes
	Bug Fixes / Technical Changes

	[Older] Docmosis v3.0.5 Release Notes
	New Features
	Automatic processing of DOCX templates by DropStoreHelper
	API additions to Reverse Engineer from Templates
	XML Data Provision Updates
	When providing data via XML, text data is loaded in a new way to ensure that data that may have an ambiguous meaning is available under both interpretations. For example:

	API Changes
	Bug Fixes / Technical Changes

	[Older] Docmosis v3.0.4 Release Notes
	New Features
	Improved Literals Processing

	API Changes
	Bug Fixes / Technical Changes

	[Older] Docmosis v3.0.3 Release Notes
	New Features
	HTML-Like Text Markup

	API Changes
	Bug Fixes / Technical Changes

	[Older] Docmosis v3.0.2 Release Notes
	New Features
	API Changes
	Bug Fixes / Technical Changes

	[Older] Docmosis v3.0.1 Release Notes
	New Features
	Plain Text Markup
	Image Scaling Options
	New PDF and Word Controls

	API Changes
	Bug Fixes / Technical Changes

	[Older] Docmosis v2.2.2 Release Notes
	New Features
	New Break Fields
	Image Lookup Extended
	Corrupt Templates are Detected Earlier
	Full-Justification Support for Multi-Line Data

	API Changes
	Bug Fixes / Technical Enhancements

	[Older] Docmosis v2.2.1 Release Notes
	New Features
	API Changes
	Bug Fixes / Technical Enhancements

	[Older] Docmosis v2.2.0 Release Notes
	New Features
	Template Merging
	New Render Methods
	Reduced IO
	Improved Error and Diagnostic Handling
	Improved docmosis.properties

	API Changes
	Bug Fixes / Technical Enhancements

	[Older] Docmosis v2.1.1 Release Notes
	Bug Fixes / Technical Enhancements

	[Older] Docmosis v2.1.0 Release Notes
	New Features
	Hyperlink Insertion

	API Changes
	Bug Fixes / Technical Enhancements

