
Docmosis Template Guide
Version 3.1

Fast documents from Java!

Docmosis Template Guide

Copyrights

© 2014 Docmosis Pty Ltd

This document and all human-readable contents of the Docmosis distribution are the
copyright of Docmosis Pty Ltd. You may not reproduce or distribute any of this material
without the written permission of Docmosis.

http://www.docmosis.com

The placeholder image provided in the Docmosis distribution is intended for use in
document templates and is not restricted by the terms above. You may use the image
for the development of document templates and distribute it as required.

Trademarks

Microsoft Word and MS Windows are registered trademarks of the Microsoft
Corporation.

http://office.microsoft.com/en-us/default.aspx

http://www.microsoft.com/windows/

Adobe® PDF is a trademark of the Adobe Corporation.

http://www.adobe.com/products/acrobat/adobepdf.html

OpenOffice.org is a trademark of OpenOffice.org.

http://www.openoffice.org

LibreOffice is a trademark of LibreOffice contributors and/or their affiliates

http://www.libreoffice.org

Page ii Docmosis Template Guide
Version 3.1

May 2014

Preface

Contents

1 INTRODUCTION..7

1.1 Separating content from presentation...7

1.2 What are templates?..7

1.3 Where are the templates stored?..8

1.4 How does document generation work?..8

1.5 Template features..9

1.5.1 General features...9

1.5.2 Advanced features..9

1.5.3 Docmosis elements...10
1.5.3.1 Field Reference...10
1.5.3.2 Expressions..11
1.5.3.3 Nesting...12
1.5.3.4 Range Specifiers...12
1.5.3.5 Built-In Variables..12
1.5.3.6 Error Handling..13

2 DEVELOPING DOCMOSIS TEMPLATES...14

2.1 Incorporating Docmosis elements...14

2.2 Using Plain Text Mark-Up...15

2.3 Using Document Fields As Mark-Up...15

2.3.1 About MS Word versions...16

2.3.2 To Insert A Field Using MS Word...17

2.3.3 To Insert A Field Using Open Office / Libre Office Writer...17

2.4 Basic text elements..18

2.5 Images..19

2.6 Active Hyperlinks...22

2.7 Conditional sections...22

2.8 Repeating sections...24

2.8.1 "Stepping" in Repeating Sections...25

2.9 Tables...27

2.9.1 Conditional rows...27

2.9.2 Repeating rows..28

2.9.3 Conditional columns..30

2.9.4 Advanced table structures...32

2.10 Lists..33

2.11 Merging Templates Together..34

2.11.1 Direct Referencing..35

2.11.2 Indirect Referencing..35

2.11.3 Templates in Different Locations..35

Docmosis Template Guide Page iii
Version 3.1
May 2014

2.11.4 When A Template Cannot Be Found...37

2.11.5 Limitations...37
2.11.5.1 Headers and Footers...37
2.11.5.2 Performance...37
2.11.5.3 Styling Limitations...37

2.12 Page and Other Breaks...38

3 APPLYING A RENDERER ..39
3.1.1 Renderer Parameters..40

3.1.2 Built In Date Renderer..40

3.1.3 Built In Boolean Renderer...41
3.1.3.1 Using the Wingdings Boolean Renderer..42
3.1.3.2 Using the Dingbats Boolean Renderer..43

Page iv Docmosis Template Guide
Version 3.1

May 2014

Preface

Welcome to the Docmosis Template Guide. This manual is intended for document
template developers who will create richly formatted document layouts with the special
embedded features that enable Docmosis to produce documents using data generated
by Java applications.

The Docmosis Template Guide provides information on developing document templates
(in either MS Word, OpenOffice.org Writer or LibreOffice Writer) that will be used to
produce printable documents. This guide assumes a level of competence in using each
word processor and is not a reference manual for either.

OpenOffice and LibreOffice are based on the same code and can be used
interchangeably by Docmosis. In this document it can be assumed that where
OpenOffice is mentioned, the same applies to LibreOffice unless otherwise stated.

Note

Don’t worry. If you are competent with only one of the two word processors, you don’t have to know
how to use the other. In general the activities to develop the templates are the same for both tools but
where there are differences between the two, this document highlights them and describes the
activities for each application.

Conventions used in this guide

This document uses typographical conventions that highlight significant parts of the
text to distinguish it from normal text.

Text that looks like this… Means this…

«fieldname» A field in the document template. In Word it is a mail merge field.
In OpenOffice / LibreOffice Writer it is an input field.

docmosis.### A code instruction: either an individual line, or part of a complete
module.

 A symbol to show that the line of code has wrapped due to the
space restrictions on the page. You should remove this symbol from
your code if you copy and paste code snippets from this document.

... An indicator to signify that the preceding sequence of code
instructions will execute incrementally until there is no more data in
the data provider.

template.doc A file name, a file extension or a Web site address.

Table 1: Typographical conventions

Additionally, some parts of the document are written specifically for one of the word
processors mentioned. When this is the case, the paragraph has the respective icon in
the left margin.

Docmosis Template Guide Page v
Version 3.1
May 2014

Table 2: Graphical conventions

Special paragraphs

In addition to the text conventions, certain information is presented in a specific way
to emphasise their information.

Note
A note provides additional supporting information that will help you to understand a point that the
author is trying to make.

Important

Executed code on a computer rarely cause damage to hardware but may well corrupt data.
Information in this form is intended to alert you to the potential for data corruption.

Tip

A tip provides anecdotal information to support the technical information about using the system and
might be useful in helping you understand the information being presented.

General Terminology

Several terms are used in this document to identify elements of a document template.
The following table provides definitions for those terms. Note that the definitions are
general: for more details on these terms, you should refer to the online Help for the
particular word processor with which you are developing the templates.

This term... describes this document element...

field a placeholder that is used by Docmosis to substitute data or control
document flow

boilerplate graphical and textual content that is added to a template as reusable
content to avoid having the document developer recreate the content
for each document. Docmosis uses boilerplate components.

header and footer elements of a printed document that repeat on every page.
Information in these elements is usually administrative information
about the document.

Table 3: Document terminology

Page vi Docmosis Template Guide
Version 3.1

May 2014

1 Introduction

Docmosis is an easy-to-use document processor which integrates with your Java application
to provide the seamless production of printable documents using data generated by the
application.

The documents are produced in one or more of the following formats: MS Word; Open Office
Writer; LibreOffice Writer; Adobe PDF and HTML using your custom-made templates.
Docmosis delivers a great reporting engine by providing the following:

 cross platform compatibility;

 portability;

 scalability.

In this chapter, we provide information about the main features of a Docmosis template.
Details for incorporating elements and Docmosis logic structures into a template are
provided in Chapter 2, Developing Docmosis templates.

1.1 Separating content from presentation
Developing applications that contain presentation logic means that when an organisation’s
brand image changes (such as a new company logo, different corporate font or company
name), so must all the applications. Using Docmosis, all of your presentational features are
developed separately from your application in commonly used word processors. This has two
distinct benefits:

 The initial development of the document templates can be assigned to those who are
experts in that field and they can be developed using one of the two most commonly
used word processors; and

 Branding changes do not require software development support, which can be time
consuming and expensive.

In addition to these benefits, Docmosis is fast: the core document processor can produce
hundreds of documents in minutes in the most popular formats, which is a great
improvement on other document processors currently available.

1.2 What are templates?
As far as Docmosis is concerned, templates are typical MS Word or OpenOffice.org Writer
documents that may also contain fields. Docmosis uses fields to insert data, and mark the
start and end of content for exclusion or repetition. Fields are standard features of these
two document tools meaning Docmosis does not require any custom plugins. Docmosis
supports a wide range of versions (MS Word 97 onwards, OpenOffice.org Writer 2.2
onwards).

Docmosis Template Guide Page 7
Version 3.1
May 2014

Docmosis Template Guide

As well as using fields to drive Docmosis, templates in MS Word and
OpenOffice.org/LibreOffice Writer give ideal control over aspects such as:

 page size, margins, and columns;

 information in running headers and footers;

 typographic characteristics that describe paragraph and character styles; and

 boilerplate text, graphics and embedded field codes.

Documents created using a template inherit this pattern when they are created and no
programmatic effort at all is required to benefit from these features. Once the document
is rendered, it has no connection to the template from which it came other than that it is
based on its characteristics. Templates can be modified as required without any concern
to the documents that have been rendered in the past.

Tip

In addition, as the paragraph and character patterns for the output are described in simple
formatting terms, there is no real need to develop paragraph and character styles. However, if you
are comfortable using styles, it might be advantageous to implement them for future template
updates.

1.3 Where are the templates stored?
You can provide your templates to Docmosis in many different ways: from directories,
files or Jar files (or if you are a developer, from any InputStream). Docmosis manages a
“store” of its own templates, which acts as a cache for the templates. The cache enables
Docmosis to analyse the template and to optimise it for later rendering. For more
information about registering templates, refer to the Docmosis Developer’s Reference.

1.4 How does document generation work?
In the simplest terms, Docmosis seamlessly integrates the data available in the
application with the element structures in the template to produce documents that may
be:

 stored electronically, printed, viewed or any combination of these; and

 published in several document formats.

During document generation, Docmosis loads the template from the template store,
merges it with data and creates the resulting document in the desired format(s). Data
can be sourced from any combination of locations (databases, files, Java Objects etc),
templates can include/exclude any content, tables can grow and shrink and images can
be embedded. These features are discussed later in this guide.

If the template document includes an index or table of contents, Docmosis will
automatically update these tables in the resulting document.

Page 8 Docmosis Template Guide Template Guide
Version 3.1

May 2014

1.5 Template features
Modern word processors enable the development of documents with support for high-
quality typesetting and layouts incorporating inline images. By inheriting these features
automatically, Docmosis provides the developer and template author with an extremely
powerful automatic document generation capability. Other aspects of the document that
are relevant to Docmosis are detailed in this section.

In this section:

 General features. Information about the general document features that can be
used to create and exploit to deliver high-quality layouts;

 Advanced features. Details on the Docmosis features that can be incorporated into
your template; and

 Docmosis elements. Details of the Docmosis elements that interact with the
document generation process.

1.5.1 General features

Many of the integration aspects are achieved simply by using well known documentation
techniques. Docmosis understands elements such as lists and tables, so there is no need
to learn new techniques to develop templates for use with Docmosis.

The general aspects of a document template include the creation of branding features,
layout features and static text elements. In order to create a document template for use
with Docmosis, the template author can simply create a document and direct Docmosis
using the following features in your word processor:

Word Feature Writer Feature Controls

Plain text markup Plain text markup Data insertion and document flow

Mail merge fields Input fields Data insertion and document flow

Bookmarks Image properties Image insertion

1.5.2 Advanced features

To generate sophisticated documents of value to your application, fields are interpreted
by Docmosis. These fields can direct Docmosis providing:

 Insertion of text or image data into the body, headers and footers and tables;

 Inclusion or exclusion of static or dynamic content;

 Hyperlink Insertion;

 Repeating of content;

 Table row repetition or exclusion;

 Table column removal;

Docmosis Template Guide Page 9
Version 3.1
May 2014

Docmosis Template Guide

 Numbered and bullet list expansion;

 Template merging

1.5.3 Docmosis elements

All Docmosis “elements” are controlled by fields, except for image insertion which is
controlled by bookmarks or image properties. Each element is discussed in detail in this
guide. In general, elements may be singular (such as a text insertion) or may be paired
having a start and end marker.

1.5.3.1 Field Reference

The following table provides a quick reference to the elements and their syntax. The
names of the fields must match exactly for the document generation to succeed.

Element Description Closing Element

«name» Replace this field by whatever data is referenced by “name”.
«link_name» Insert a hyperlink at this location, looking up the URL from

the data under the key "name". The URL can optionally
specify display text other than the URL to be used with the
form: <display text>|<url>. eg "mySite|
http://www.my.com"

«$abc=name»

«$abc=10.2»

«$abc='Fred'»

«$abc=true»

«$abc=null»

Lookup the data associated with “name” and assign it to the
variable “abc”.

Assign the number 10.2 to variable $abc

Assign the string "Fred" to variable $abc

Assign the boolean true to variable $abc

Assign the value null to variable $abc
«$abc» Lookup the variable “abc” and render its value
«cs_name»

«cs_{expr}»

«cs_$abc»

All content up to the closing element is included or excluded
depending on the value associated with “name” or the
expression “expr” or the variable “abc”.

«es_name»

«es_{expr}»

«es_$abc»

«es_»

«rs_name»

«rs_$abc»

«rs_people:st
ep2»

All content up to the closing element is repeated whilst there
is data associated with “name” or the variable “abc”.

“stepN” indicates that the data (“people”) should be iterated
in steps of N size. When stepping is used, variables $i1,
$i2,...$iN are automatically created to access the items
available in each step.

«es_name»

«es_$abc»

«es_»

«cr_name»

«cr_{expr}»

«cr_$abc»

Include the following table rows depending on the value
associated with “name” or expression “expr” or the variable
“abc”.

«er_name»

«er_{expr}»

«er_$abc»

«er_»

«rr_name»

«rr_$abc»

«rr_people:st
ep2»

Repeat the following table rows whilst there is data
associated with “name” or the variable “abc”.

“stepN” indicates that the data (“people”) should be iterated
in steps of N size. When stepping is used, variables $i1,
$i2,...$iN are automatically created to access the items
available in each step.

«er_name»

«er_$abc»

«er_»

Page 10 Docmosis Template Guide Template Guide
Version 3.1

May 2014

Element Description Closing Element

«cc_name»

«cc_{expr}»

«cc_$abc»

Include or exclude the table column containing this field
depending on the value associated with “name” or the
expression “expr” or the variable “abc”.

Image
bookmarked with
label or named
“img_name”
(deprecated
"bm_name")

Replace the image with the image data associated with
“name” using the default scaling settings (which is stretch).

The default setting can be changed by setting the docmosis
property
docmosis.analyzer.image.scaling.default

to fit or stretch.

See the Docmosis Developer's Reference for information
about setting properties.

Image
bookmarked with
label or named
“imgstretch_n
ame”

Replace the image with the image data associated with
“name” and stretch the image to match the template image
placeholder.

Image
bookmarked with
label or named
“imgfit_name”

Replace the image with the image data associated with
“name” and fit the image into the template image
placeholder whilst preserving the image aspect ratio.

«ref:sub1.doc
»

Insert the template sub1.doc at this location.

«refLookup:su
b1»

Lookup sub1 in the data to get the name of the template to
insert at this location.

Table 4: Docmosis element quick reference

Note

Care must be taken with all fields when using MS Word documents as templates. You MUST AVOID
SPACES in a field name as a space will truncate the field and sometimes Docmosis will not be able to
detect this. The good news is that most of the time this will turn up as an obvious error reported
during document generation.

1.5.3.2 Expressions

Docmosis uses { and } to delimit an expression to be evaluated. The following table
shows examples of valid expressions that Docmosis supports. The examples are for a
conditional section (“cs_”) but apply to conditional columns (cc_) and rows (cr_) in tables
also.

Element Description

«cs_{a<10}» Lookup data element “a” and see if it is less than 10 numerically. If “a” is not
numeric, a string comparison is performed automatically.

«cs_{a='fred'}» Lookup data element “a” and see if it is equal to the String literal “fred”.

«cs_{$a!=10}» Lookup the variable “a” and see if it is not equal to the numeric value 10. If
variable “a” does not resolve to a numeric value, a String comparison is
performed.

«cs_{!hasElements()}» Lookup the data element “hasElements()” and boolean negate the result. If
hasElements() returns something other than a boolean, the result will be
evaluated using a best effort (eg a String value of “true” would resolve to
true). Note that the use of the brackets “()” typically implies the data is to be
sourced by calling a Java function literally.

Docmosis Template Guide Page 11
Version 3.1
May 2014

Docmosis Template Guide

Element Description

«cs_{a=null}» Lookup the data element “a” and determine if it's value is null

«cs_{$a}» Determine if the value of the template variable $a is true

Other operators include
<=

>=
Less than or equal to

Greater than or equal to

1.5.3.3 Nesting

Elements can be “nested” with regards to the way they lookup data. For example,
«hotel.floor» typically would refer to the floor within a hotel object. The period “.”
character represents the delimiter between one level of data and the next. This is
described in detail later.

1.5.3.4 Range Specifiers

Data elements can also be referenced by ranges of values Docmosis should lookup. This
provides a fair amount of power within the template to select the values of interest. It
depends on the context of the element as to whether it is allowed to produce multiple
values (and Docmosis will flag errors where inappropriate use is made). For example, a
repeating section is expected to produce multiple values, but a simple lookup field is not.

The following table details the types of range specifier available.

Element Description

«hotel[0]» The first hotel (indexing starts at zero)

«hotel[F]» The first hotel (equivalent to index zero)

«hotel[L]» The last hotel

«hotel[*]» All hotels

«hotel[F3]» The first 3 hotels

«hotel[L3]» The Last 3 hotels

«hotel[1,2,4]» The hotels at indexes 1,2 and 4

«hotel[1-3,L2]» The hotels at indexes 1 to 3 inclusive and the last 2

«hotel[0-L2]» All but the last 2 hotels

«hotel[3].floor[L].room[0].name» The name of the first room of the last floor of the hotel at index 3

1.5.3.5 Built-In Variables

Docmosis provides some built-in variables to assist with common data lookup
requirements.

Variable Description

«$top»

or «$root»

The root of the data regardless of the current position or context
in the template

«$this»

or «$current»

The current source of data in the current position in the template.
This allows for anonymous data lookups from arrays or collections
such as «$current[0]».

Page 12 Docmosis Template Guide Template Guide
Version 3.1

May 2014

Variable Description

«$parent» The parent or container of data in the current context of the
template. Allows data lookup in the current “hotel” when the
current context is a “floor” for example.

«$idx» The current index when iterating through a data set. For example,
if we are repeating over all hotels, $idx would report the index of
the hotel we are up to.

«$itemnum» Similar to $idx but is the number of the item which we are
currently addressing. Item numbering starts at 1.

«$size» The size of the current repeating data set. For example if we are
repeating over all hotels, $size would be the number of hotels.

«$i1»,«$i2»,..«$iN» References to the Nth item when repeating data in "steps of N".
For example «rs_people:step3» steps through the people in "steps of
3" and Docmosis automatically creates variables $i1, $i2 and $i3 to
access each element in the step.

For more information about the use of "steps of N" see sections
2.8 Repeating sections (page 24) and 2.9.2 Repeating rows (page
28).

«$idx1»,«$idx2»,..«$idxN» The absolute indexes of the items when repeating with "steps of
N" (as described above) starting at zero.

«$itemnum1»,«$itemnum2», ...
«$itemnumN»

The absolute indexes of the items when repeating with "steps of
N" (as described above) starting at one.

Note

Variables can also be referenced using var_ instead of $. This means <<$name>> is equivalent
to <<var_name>>. This is particularly useful for bookmarking images using variables in MS Word,
where you cannot use the $ symbol in the bookmark name.

1.5.3.6 Error Handling

Docmosis offers two ways to deal with errors encountered in templates during processing:

1. write the error INTO the resulting document - errors are highlighted and footnotes are
added to offer details and suggestions as appropriate

2. throw an exception and abort document production

This behaviour is property controlled since it is expected to be related to the type of
environment in which Docmosis is running. The default behaviour is write errors into the
document, but this is not always advisable. See the Docmosis Developer's Reference for
more information.

Docmosis Template Guide Page 13
Version 3.1
May 2014

Docmosis Template Guide

2 Developing Docmosis templates

The basic steps for developing a template are:

1. create the layout, boilerplate content and typesetting characteristics of a document;

2. incorporate the Docmosis elements (fields).

The boilerplate content can include sophisticated structures using headings, lists, tables,
images, and headers and footers.

Tip

When creating a template, use the word processor of your choice from the two identified.

This chapter provides instructions for the inclusion of the supported fields; it is divided
into sections that discuss the basic aspects through to some advanced techniques. In
general, the information does not cover typesetting of documents but does provide
information where necessary. Most of the information in this chapter is relevant to both
word processors: where they differ, information is provided for each case.

Important

All the procedures in this chapter assume that you understand the techniques required for the
particular word processor and that you have a document open in the word processor on which you can
perform the procedure.

In addition, the procedures use menu-based instructions for consistency.

2.1 Incorporating Docmosis elements
You can add Docmosis "fields" at any location in a document template. Each field must
have an appropriate property name that identifies it and associates it with an element of
the data generated by Docmosis. During document generation, Docmosis expects the
application to provide values and logical data structures with the same names and
structure as the elements that exist in the template.

Docmosis supports fields using:

 plain text mark-up

 Merge Fields in MS Word

 Input Fields in Open Office Writer or Libre Office Writer

Plain text mark-up is the simplest to use since there are no dialogs to interact with and
what you see is what you get. With both Word and Writer, a field (Merge Field or Input
Field) can have a different value displayed to what it represents "behind the scenes".

Page 14 Docmosis Template Guide Template Guide
Version 3.1

May 2014

2.2 Using Plain Text Mark-Up
Plain text mark-up is the easiest method of creating fields in Docmosis templates. By
default, the start of a field is annotated by << and the end of a field by >>. So to create
a field that looks up "personName", you would simply type <<personName>> into the
document.

So as to be as unobtrusive as possible to the text of a template, Docmosis is strict about
identifying plain text fields and will ignore invalid mark-up assuming it is plain text. For
example, <<personName> will be ignored and left as plain text because a closing ">"
character is missing. Likewise, a space between the << and the name or the name and
>> will mean the field is not recognised. The following table shows the typical types of
error that will result in a field not being recognised.

Example Field Valid Problem

<<personName>> <<personName>> Correct field. Docmosis will identify and substitute.
<<personName> <<personName> Missing trailing >
<personName>> <personName>> Missing leading <
<< personName>> << personName>> Space after leading <<
<<personName >> <<personName >> Space before trailing >>
< <personName>> < <personName>> Space after leading <
<<personName> > <<personName> > Space before trailing >

Plain text mark-up is controlled by the properties:

Property Default Description

docmosis.analyzer.field.plainText.prefix << Start of field delimiter
docmosis.analyzer.field.plainText.suffix << End of field delimiter

The plain text mark-up settings can be changed or disabled on a case by case basis using features of
the DocumentProcessor class. For more information about setting Docmosis properties,
please see the Docmosis Developer's Reference.

2.3 Using Document Fields As Mark-Up
Docmosis also supports the use of the "document fields" supplied by the Word and Writer
word processors such as merge fields and input fields.

The advantages of using these document fields include:

1. you can display text that is different from the actual field codes for docmosis. For
example the following field appears as:
 «friends»
but may in fact represent:
 «friends[0].lookupName»
so it appears smaller or more succinct in the document.

Docmosis Template Guide Page 15
Version 3.1
May 2014

Docmosis Template Guide

2. a logical separation of content and control/mark-up. It is clear to both users and the
Docmosis engine what is plain content and what is Docmosis mark-up.

The disadvantages of using document fields include:

3. a field can be confusing or misleading because it's true lookup value is hidden

4. more effort is required to work with these fields via popup dialogs or switching field
codes on and off

5. with Word merge fields the "display" value can be accidently lost (replaced with the
underlying lookup value) if the fields in the document are "updated"

6. the latest versions of Word make it difficult to simply insert a merge field, trying to
guide the user to link up to a data source. The options are to user plain text fields,
type the field codes manually, or copy a merge field from another document then edit
it to what you require.

The following sections describe how to insert document fields using the features of Word
and Writer.

2.3.1 About MS Word versions

In general, the procedures to implement the Docmosis features into templates are
consistent in all versions of MS Word. However, the layout of the Field dialog box has
changed over the years. The following illustrations show the dialog box layouts for the
different versions and identifies the areas that are relevant to Docmosis templates.

The Field dialog box layouts in different versions of MS Word

Newer versions of Word (from 2007) make it difficult to insert a merge field manually.
Your options include:

1. use plain text mark-up instead of document fields

Page 16 Docmosis Template Guide Template Guide
Version 3.1

May 2014

The Categories list in
Word 97 and 2000.

The Categories list in
Word XP (2002) onwards.

The Field names list in
Word 97 and 2000.

The Field names list in
Word XP (2002) onwards.

2. copy a merge-field from another document then edit it

3. turn field-codes on and manually construct a field. Please refer to Word's help for
details about manually entering field codes.

2.3.2 To Insert A Field Using MS Word

This section describes how to insert a document field. It is generally simpler to use plain
text mark-up as described in section 2.2 Using Plain Text Mark-Up.

To insert a field that will look up a value for "firstName":

For versions prior to Word 2007:

1. Position the insertion point at the location for the field.

2. Select Insert > Field.

3. In the Field dialog box, select Mail Merge from the Categories list.

4. Select MergeField from the Field names list.

5. Type firstName into the appropriate field (see About MS Word versions earlier).

6. Click OK.

Tip

By default, MS Word displays the same text in the merge field as the title you enter in the Field
dialog box. You may change the text that is displayed without changing the title of the merge
field. Simply edit the text that appears between the angle brackets. Be warned though that this
is generally not a good idea because if anyone updates the field codes in the document, the
“display” name will be reverted back to the real contents.

Tip

In MS Word documents it is a good idea to frequently ensure the merge fields are displaying
what they actually are going to look up. This can be achieved by selecting the fields (or the
whole document) and pressing F9 (update field codes).

For versions from Word 2007:

1. Copy the field from another document and then edit

The reasons for the above limitation are described in 2.3.1 About MS Word versions.

2.3.3 To Insert A Field Using Open Office / Libre Office Writer

This section describes how to insert a document field. It is generally simpler to use plain
text mark-up as described in section 2.2 Using Plain Text Mark-Up.

To insert a field that will look up a value for "firstName":

Docmosis Template Guide Page 17
Version 3.1
May 2014

Docmosis Template Guide

1. Position the insertion point at the location for the field.

2. Select Insert > Fields > Other.

3. In the Fields dialog box, select the Functions tab.

4. Select Input Field from the Type list.

5. Type firstName into the Reference field.

6. Click Insert.

7. When the Input Fields dialog box prompts you, in the field below the one that
contains the field reference, type the text that you want to be displayed in the
document to identify the field. Keeping this text consistent with the text in the
Reference is a good idea since it can avoid mix-ups.

Note

OpenOffice.org Writer presents the field information differently from MS Word: OpenOffice.org Writer
does not insert a pair of angled brackets («…») around the displayed field text. You can hover your
mouse cursor over the field to see the “real” value that will be used by Docmosis to lookup the data.
Another easy way to access the "real" value is to right click on the field and select "Fields".

8. Click OK.

9. To close the Input Fields dialog box, click Close.

Note

When inserting fields in OpenOffice Writer you may choose to leave the field dialog open whilst you
work and whenever you need to add a field, you simply go to the dialog and start adding it. Also, note
that ctrl-F2 is a shortcut to the Fields dialog.

2.4 Basic text elements
Docmosis supports the inclusion of elements that simply match an element of data that is
output by the application (essentially, this is a one-to-one match). Wherever an element
occurs, Docmosis will substitute the actual data value in the document. The inserted data
inherits all the typesetting characteristics that are applied to the field such as font and
paragraph style. The syntax for a text field is:

«element-name»

To populate the template element, the Docmosis engine would attempt to source data by
the name of the element. A field designed to look up data for "firstName" would appear
in different ways depending on how you create the field:

Field Appearance

Plain Text Field <<firstName>>

Word Merge Field «firstName»

Writer Input Field firstName

Page 18 Docmosis Template Guide Template Guide
Version 3.1

May 2014

Docmosis will replace the field with all the text supplied as if you had selected and typed over the
field by hand. If the lookup data contains new-line characters, Docmosis will create new
paragraphs in the resulting document. If there is no lookup data for the name, the field is
removed.

2.5 Images
Docmosis is able to insert images at arbitrary locations in documents. Instead of using
fields to identify the location for an image substitution, Docmosis uses the word
processor’s image handling features. By handling images this way, the template can
precisely define how the image will be placed and bordered within the resulting
document. As each word processor works slightly differently, there are specific methods
for setting up the Docmosis code element:

 In MS Word Docmosis uses the bookmarks feature to identify a name for an image;
and

 OpenOffice.org Writer supports the identification of images directly, using a Name
property.

Images can be placed anywhere in a Docmosis template.

Note

In the preceding example, a borderless table is used for layout purposes.

Tip

This activity doesn’t discuss the actual images that you will publish, only the placeholder image. You
may create and use your own image but for your convenience, a placeholder image is provided as
part of the Docmosis distribution.

You are free to use it without restriction.

Docmosis Template Guide Page 19
Version 3.1
May 2014

Docmosis Template Guide

Use only inline images in MS Word

Docmosis cannot support floating images in MS Word because it uses the bookmarks
feature to assign a name an image placeholder. When you position an image using the
floating position settings, MS Word removes the bookmark. There are other limitations to
how Docmosis supports images, particularly in terms of overlapping with text and other
images. This generally will not cause issues for typical documents.

Image file size

When you insert a placeholder image, you will embed the image in the document. This
means there is a copy of the image at every location in which it is placed (not simply a
single, referenced copy). To limit the overall size of the template file and to improve the
performance of a document generation, you should use relatively simple and small
placeholder images to identify the locations without compromising on print-quality if the
document is to be printed.

Image placeholder naming convention

Image placeholder names are identified using special prefixes. These prefixes are a useful
way to distinguish those items that are specific to your Docmosis application and enable
you to use the bookmarking and naming features for other items that aren’t part of a
document generation.

The prefixes you can use are:

Prefix Example Effect

img_ img_image1

The image is substituted with the supplied image1 and
default scaling is applied. The default scaling is "stretch"
and may be changed by Docmosis properties or by
parameters when rendering the document.

imgstretch_ imgstretch_image1

The image is substituted with the supplied image1 and
stretch scaling is always applied. The image is stretched
to be the same size and shape as the place holder image
in the template.

imgfit_ imgfit_image1
The image is substituted with the supplied image1 and
the image will be scaled to fit the template placeholder
whilst preserving image1's aspect ratio.

Note

Docmosis previously used "bm_" instead of "img_". The "bm_" prefix is still valid and is synonymous
with "img_" but it's use is deprecated and future versions of Docmosis may remove support for it.

In the following procedures, an image is inserted as a place holder in the template to be
substituted for image data identified by "image1".

To insert an image element (MS Word):

1. Position the insertion point at the location of the image.

2. Select Insert > Picture > From File.

Page 20 Docmosis Template Guide Template Guide
Version 3.1

May 2014

3. In the Insert Picture dialog box, navigate to the location of the placeholder image and
select it in the list of files.

4. Click Insert.

5. When the image appears in the document, select it and use the reshaping handles to
adjust the dimensions of the image.

6. Make sure that the image is selected and click Insert > Bookmark.

7. In the Bookmark dialog box, type img_image1 into the Bookmark name field.

8. Click Add.

Tip

MS Word wraps the content of the bookmark in light-coloured square brackets. To see the bookmark
in place, set the Bookmarks option in the MS Word Options dialog box.

Tip

MS Word Bookmarks names can't contain "$" characters. To use a Docmosis variable in a bookmark
name use "var_" instead of "$", for example "var_myVar" instead of "$myVar".

Tip

MS Word Bookmarks names can't contain "." characters, so it cannot directly use "nested" lookups
(eg person[0].photo). You can use Docmosis variables to overcome this in conjunction with the tip
above about referencing variables in bookmarks.

eg <<$myImage=person[0].photo>> in your template body to set the variable

and "img_var_myImage" as the book mark name to link the image data to the template image.

To insert an image element (OpenOffice.org Writer):

1. Position the insertion point at the location of the image.

2. Select Insert > Picture > From File.

3. In the Insert picture dialog box, navigate to the location of the placeholder image and
select it in the list of files.

4. Click Open.

5. When the image appears in the document, select it and use the reshaping handles to
adjust the dimensions of the image.

6. Make sure that the image is selected and click Format > Picture.

7. In the Picture dialog box, select the Options tab.

8. Type img_image1 into the Name field.

9. Click OK.

Docmosis Template Guide Page 21
Version 3.1
May 2014

Docmosis Template Guide

Both bookmark names and image names must be unique in your template since both
Word and Writer force the name to be unique. If you wish to reference the same image
in your template multiple times, you will have to provide different names by which the
image can be referenced.

2.6 Active Hyperlinks
Docmosis allows you to insert a hyperlink dynamically into your document. In your
template, a particular naming convention identifies fields you would like to work as
hyperlinks.

To create a hyperlink, insert a field starting with "link_". For example, the following
field:

«link_myWebSpace»

will act as a hyperlink looking up data for myWebSpace in your data. If your data has a
value http://www.docmosis.com for myWebSpace, then a hyperlink to
http://www.docmosis.com will appear in your rendered document.

You may also wish to make the displayed text for your hyperlink different from the actual
URL of the link. Using the above example, to display DOCMOSIS instead of
http://www.docmosis.com for the link in the final document, the data can provide a value
DOCMOSIS|http://www.docmosis.com. The pipe (|) symbol separates the display
name from the actual link.

2.7 Conditional sections
Conditional content is content in that will be populated in the final document depending
upon the data that is generated by the application. If the specified condition is met, the
content within the matching conditional section is rendered in the document.

An example of the application of conditional content might be in a product description
such as that for a motor vehicle in the following illustration.

Page 22 Docmosis Template Guide Template Guide
Version 3.1

May 2014

An example of conditional sections in a Docmosis template.

The conditional sections will render the data that is appropriate for each condition. That
is, each document will be generated with either metric or imperial specifications but not
both. Each conditional section is defined using a pair of fields: a start field and an end
field. The general syntax for a conditional section is:

«cs_condition-name»

The text and elements of the conditional section.

«es_condition-name» or simply «es_ »

Conditional sections can use expressions, variables and range specifiers. See the tables in 1.5.3
Docmosis elements for more information.

The conditional start and end tags are removed from the resulting document and if each tag is on a
line by itself, the entire line will be removed.

To create a conditional section:

1. Position the insertion point in an empty paragraph at the starting location of the
conditional section.

2. Insert the opening condition element into the empty paragraph.

3. Add the boilerplate content and other Docmosis elements into the subsequent
paragraphs in the document.

4. Insert the closing condition element into an empty paragraph following the conditional
content.

5. Repeat steps 1 through 4 for as many conditions as there are in your application.

Docmosis Template Guide Page 23
Version 3.1
May 2014

This condition returns the
metric specifications.

This condition returns the
imperial specifications.

Docmosis Template Guide

2.8 Repeating sections
In a document, a repeating section is a group of elements in succession whose content
changes but whose format is the same. Docmosis supports several forms of repeating
sections: block-level, tables and lists.

Note

Tables and lists are special forms of repeating sections. They are discussed after this section that deals
specifically with block-level repeating sections.

There might be occasions when you want to include repeating sections but do not want to
use tables and lists (bulleted or numbered) to present them. In this case you use the
Docmosis repeating section elements. Repeating sections can contain any content
desired, and it will be repeated whilst there is data to be displayed.

The example below shows a repeating section named IDSets, and it contains a table
with an image and textual data. This table will be repeated as many times as there is
data associated with IDSets.

Repeating sections also contain boilerplate content and other Docmosis elements.

The general syntax for a repeating section is:

«rs_repeating-section-name»

The text and elements of the repeating section.

«es_repeating-section-name» or simply

Repeating sections can be “nested” inside other repeating sections to any depth desired. Repeating
sections can use variables and range specifiers as appropriate. See the tables in 1.5.3 Docmosis
elements for more information.

The repeating start and end tags are removed from the resulting document and if each tag is on a
line by itself, the entire line will be removed.

Page 24 Docmosis Template Guide Template Guide
Version 3.1

May 2014

Repeating sections
have a pair of
containing elements.

To create a repeating section:

1. Position the insertion point in an empty paragraph at the starting location of the
repeating section.

2. Insert the opening repeating section element into the empty paragraph.

3. Add the boilerplate content and other Docmosis elements into the subsequent
paragraphs in the document.

4. Insert the closing element into an empty paragraph following the repeated content.

Repeating sections also provide access to some built-in variables such as $idx which is the
current count of the number of times the loop has been repeated starting from zero. For,
given 4 "people" in an array «$idx» can be used as a index as follows:

«rs_people»
«$idx». «$name»
«es_people»

To produce output that might look like this:

0. James
1. Jenny
2. Julie

whereas using «$itemnum» instead would result in:

1. James
2. Jenny
3. Julie

2.8.1 "Stepping" in Repeating Sections
Docmosis supports the concept of repeating in "steps". Say for example you have a
simple array of people objects in your data, and you need to place this on the page in a
3-across layout:

the "stepping" allows you to do this in the template as follows:

Docmosis Template Guide Page 25
Version 3.1
May 2014

Docmosis Template Guide

The ":step3" directive tells Docmosis that we want to move through the "people" data in
steps of 3. Docmosis automatically creates the $i1, $i2 and $i3 variables for you to use
corresponding to the first, second and third elements. For the second row, $i1, $i2 and
$i3 will correspond to the fourth, fifth and sixth elements and so on.

Docmosis will automatically create the variables required corresponding to the step being
used. In the case of "step10", variables $i1, $i2,... $i10 will exist.

If you need a 4-across layout instead, this is easily changed in the template by using
":step4" and adding the 4th column in your template to layout as you require:

and the resulting document (using the same data) would look as follows:

The $i1, $i2 etc. automatic variables correspond to the elements in the data provided
under the "people" key. The example above assumes that each object in the "people"
data has at least a "name" attribute and an image to display. Though you can't see it
from the example, each of the images also has a template-setting to indicate where the
images come from. In Word templates, this would be a bookmark and in OpenOffice
Writer, this would be the image name (see section 2.5 Images for more information about
inserting images).

Page 26 Docmosis Template Guide Template Guide
Version 3.1

May 2014

Docmosis also creates $idx1, $idx2... and $itemnum1, $itemnum2... variables which relate
to the $i1, $i2... variables. The $idx1, $idx2.. variables provide the absolute index into
the data starting at zero (ie 0,1,2,3,4,5...). The $itemnum1, $itemnum2... variables
provide the absolute index starting at one (ie 1,2,3,4,5,6...).

2.9 Tables
Using fairly simple table markup, you can create sophisticated table layouts in your output
documents. In addition to being able to insert text and images using the methods
already described, you can use the table-specific Docmosis elements to control:

 including or excluding of groups of rows;

 repeating groups of rows;

 removing columns.

2.9.1 Conditional rows

A set of consecutive rows can be removed from a table using conditional row elements.
The following example uses the «cr_hasFriends» and «er_hasFriends» elements to indicate a
group of rows in a table that should be excluded if there are no friends.

In this case, if the data indicates that hasFriends is true then the row containing “Jimmy
has some friends” would be left in the resulting document, otherwise it would be
removed. In all cases, the rows containing the markers «cr_hasFriends» and
«er_hasFriends» will be removed:

Docmosis Template Guide Page 27
Version 3.1
May 2014

Docmosis Template Guide

Note

End markers for conditional rows can also be defined without the name. In the above example, the
field «er_hasFriends» could also be simplified to «er_ ».

2.9.2 Repeating rows

Rows of a table can be repeated whilst there is data to repeat. The following example
will list of all the friends of Jimmy using one row for each friend showing their name in
one column and job in another.

The following example uses the «rr_friends» and «er_friends» elements to indicate a group
of rows in a table that should be excluded if there are no friends.

In this case, while the data can supply information for friends the row containing the
lookup friend information will be rendered. In all cases, the rows containing the markers
«rr_friends» and «er_friends» will be removed.

Page 28 Docmosis Template Guide Template Guide
Version 3.1

May 2014

The template for repeating rows also provides some tricks for colouring and borders that
can produce impressive results. The rules are as follows:

1. if a cell of a row inside a set of repeating rows has a background colour different
to that of the corresponding cell of the starting row (the row with the «rr_xxx»
element), then the background colour for that cell will alternate between that of
the starter row and it’s own background colour. This allows everything from plain
tables, to alternating rows to crazy alternating patterns.

2. the starting row (the row with the «rr_xxx» element) determines the top border of
the first repeating row. The ending row (the row with the «er_xxx» element)
determines the bottom border of the last row to be rendered. This applies on a
cell-by-cell basis as for the background colouring. This allows for highly
configurable borders to be specified that work pretty much as one would expect.

The following example creates a bounding border encapsulating all the repeating rows
(including the marker rows, and alternates the background colour.

Notice in the result below the alternating background colours and the border wraps all
cells collectively.

Docmosis Template Guide Page 29
Version 3.1
May 2014

Docmosis Template Guide

Note

End markers for repeating rows can also be defined without the name. In the above example, the
field «er_friends» could also be simplified to «er_ ».

More advanced examples are given in section 2.9.4.

2.9.3 Conditional columns

A template may also indicate columns in a table that are to be conditionally removed.
The width of the table remains as fixed in the template and the space recovered by the
removal of the column is spread across the remaining columns. The following example
shows a Docmosis conditional column element («cc_showJobs») at the top of the second
column.

When rendered, this removes the column entirely where the data indicates that showJobs
is false.

Page 30 Docmosis Template Guide Template Guide
Version 3.1

May 2014

The following example uses expressions to conditionally remove two columns from the
table. If you examine the Trial 2 and Trial 3 columns, you will see the conditional column
expressions in fields «cc_{ntrials>1}» and «cc_{ntrials>2}».

If the underlying data says there is only one trial for example, that is, ntrials = 1 then the
conditions for the Trial 2 and Trial 3 columns will evaluate to false and the columns will be
excluded. This is shown in the following example output:

If the underlying data says there are 2 trials, that is, ntrials = 2, then the Trial 2 column
will remain in the resulting document, but the Trial 3 column is still removed:

Docmosis Template Guide Page 31
Version 3.1
May 2014

Docmosis Template Guide

2.9.4 Advanced table structures

Docmosis supports the nesting of repeating and conditional content in table structures.
The following example template shows multiple levels of repeating to print out the room
details within each floor within each hotel.

The example above is fairly extreme and it would often be more natural to represent the
structure in a combination of repeating sections and tables with repeating rows. The
following template is equivalent but is not providing the entire structure within a single
table:

Page 32 Docmosis Template Guide Template Guide
Version 3.1

May 2014

2.10 Lists
Docmosis infers repetition when there are one or more elements in paragraphs formatted
as a list using the ‘bullets and numbering’ features. As long as the data provider has data
to populate, the list will be rendered with items.

In the following example, a field is formatted as a numbered list and will be automatically
expanded.

An example of a list item.

Docmosis splits the element into two parts, a repeating component and a lookup
component. The repeating component can be limited by a using range specifier covering
multiple values. In this example, the range specifier [*] against the friends name means
for all friends and the trailing friend name is the lookup of the data to display.

As another example of how the field is split, consider the following template.

Docmosis Template Guide Page 33
Version 3.1
May 2014

Docmosis Template Guide

The element now is in a bullet list style rather than numbered. It has a repeating
component friends[F].pets[*] meaning all pets of the first friend and a lookup component
type. The resulting document is shown below where the friend has a dog and a parrot.

Docmosis only allows a single component of the element to be a multi-valued range. For
example, Docmosis would not allow an element friends[F2].pets[*] since this would repeat
at multiple stages and typically would be a mistake.

To create a list:

1. Position the insertion point at the location of the first list item.

2. Format the paragraph as a list item (bulleted or numbered).

3. Add the Docmosis element that will render the data into the list paragraph.

2.11 Merging Templates Together
Docmosis has the ability to combine multiple templates into the resulting document. This
gives developers and template authors the ability to separate common content out of
individual templates and into a "shared" or common template. The common information
then only needs to be maintained in one location and all referencing templates will
automatically use the new information. Examples of use include company information
including logos for the header, contractual clauses and signature blocks for the body, or
even the specific content of the bottom left of the footers.

Templates used for inclusion can include all typical content including styled text,
headings, tables, images etc. Docmosis will populate the templates as per normal using
the data that applies at the point of insertion, as if it were content in the main template
as opposed to separated out. Any number of templates can be included, and included
templates may include other templates.

The way to control this is to insert a reference in your template to another template. The
referenced template will be populated and inserted at the referenced location. For
example, given a starting template MainProcess.doc that references two other templates
process1.doc and process2.doc, Docmosis will insert process1.doc and process2.doc into
MainProcess.doc as it processes MainProcess.doc.

Docmosis supports two ways of referencing templates; directly and indirectly. Each of
these is explained in the following sections.

Page 34 Docmosis Template Guide Template Guide
Version 3.1

May 2014

2.11.1 Direct Referencing

Direct referencing is very simple, the template to include is literally named in the
reference. The way to create a direct reference is to use a merge field prefixed with
“ref:”. For example «ref:process1.doc» will cause the template process1.doc to be inserted.
The following example shows how this would look in a template:

2.11.2 Indirect Referencing

The name of the template to include can be determined by the data, rather than by the
template directly. In this scenario, Docmosis will ask the DataProvider to provide the
template name.

To create an indirect reference, the field prefix “refLookup:” is used. For example, if we
created a field «refLookup:process1», Docmosis will ask the DataProvider for the name of
the template under the key “process1”. The value the DataProvider returns will be used
as the name of the template to insert into the document. If the template in the example
above was changed to use an indirect reference as discussed, it would look like this:

2.11.3 Templates in Different Locations
Docmosis assumes by default the templates referenced existing in the same location (that
is the same template context) as the referring template. In our scenario above,
process1.doc and process2.doc must exist in the same place as MainProcess.doc. This works
for small scale use, but would quickly become unmanageable if there were a large
number of templates in use.

Docmosis Template Guide Page 35
Version 3.1
May 2014

Docmosis Template Guide

For example, say the company banner information has been put into a separate template
for use in all documents, it would be unfortunate to have copies of this template
everywhere. Instead, there might be a single copy of the template in a common area for
all projects and templates to reference. Docmosis allows the templates to be referenced
in any context using the familiar path notation. Here are some example template
references and what they mean.

Field Description

«ref:template1.doc» template1.doc is expected to be in the same location as the calling
template.

«ref:/template1.doc» template1.doc is expected to be in "root" context . The root context is
the parent of all other contexts.

«ref:/common/template1.doc» template1.doc is expected to be in the "common" context one down
from the root context

«ref:../template1.doc» template1.doc is expected to be in the parent context of the calling
template.

For example, consider a project “projectAlpha” which has its own templates and is stored
in the template context “projects/projectAlpha”. We want to include a common heading in
some of our templates, and so we separate that content into a separate template called
corporateHeading.doc. We realise that corporateHeading.doc applies to lots of other projects
and should not really exist inside projectAlpha itself.

We decide to create a common area to store the templates that are common to lots of
projects inside the context “common”. When all our templates are loaded into Docmosis,
the template store will look like this:

Templates such as mainDocument.doc will be able to reference and include the template
headerContent.doc using the field «ref:/common/headerContent.doc» or the field
«ref:../../common/headerContent.doc». The two fields just listed use a literal "ref:" lookup of the
template names; the same result can be achieved using the indirect "refLookup:" lookup if
the data provider supplies the appropriate value.

Note

If you are using Word for your templates, make sure the paths or folders you are using don't contain
spaces in the name. If so, the fields in the Word template will not work as desired (and Docmosis will
tell you so). If you really wish to have spaces in the names of paths and folders, then you will have to
use dynamic (refLookup:) fields rather than static (ref:) fields or use OpenOffice Writer for your
templates.

Page 36 Docmosis Template Guide Template Guide
Version 3.1

May 2014

2.11.4 When A Template Cannot Be Found

Docmosis treats a missing template as an error. During the rendering of a document, if a
template reference is encountered and the template cannot be found then an error will be
raised. Depending on Docmosis configuration this will either write the error into the
resulting document, or produce no document at all and raise a Java Exception (see
section ??).

A template could make reference to a template that doesn't exist and still be functional if
the processing of that template does not try to render the missing reference. This could
happen if the reference was in a conditional section that always gets skipped, for
example.

2.11.5 Limitations
There are some practical limitations to the ability to include templates. The following
sections cover the fundamental limitations.

2.11.5.1 Headers and Footers

The main (root) template defines the headers and footers that will be used throughout
the produced document. Any headers and footers in the included templates will be
ignored. This doesn't mean the content of headers and footers can't be determined by
included templates, but the presence and overall properties are controlled by the main
template.

2.11.5.2 Performance

The flexibility and maintainability provided by the Docmosis template merging feature has
a small processing overhead at runtime. Since significantly more work needs to be done
to produce the final combined document it is not surprising that there is a runtime cost.
The impact will vary upon the numbers and sizes of included documents but in practice
the difference in practice is not expected to be noticeable.

2.11.5.3 Styling Limitations

There are some tricks to learn about styling with regards to including templates. One
example is where the included template has a Heading style for the first line. Depending
on the versions of OpenOffice in use, the Heading style may get dropped unless there is a
leading blank line first. This is fairly minor in practice, but something to be aware of.
Most of the time the behaviour will be as expected and so experimentation will only
occasionally be called-for.

Docmosis Template Guide Page 37
Version 3.1
May 2014

Docmosis Template Guide

2.12 Page and Other Breaks
Docmosis templates may contain several types of break including page breaks, column
breaks and section breaks. If the break is in your template it will appear in your rendered
documents unless you condition it out with a conditional section. If the break is inside a
repeating section it will be repeated each time your repeating section is displayed.

To allow templates to be more expressive, Docmosis provides several fields that can be
used to render a break, but without having to place the break literally into the template:

Field Description

«pageBreak» Insert a page break at this location in the document.

«columnBreak» Insert a column break at this location in the document. This only
applies to templates that have a multi-column page layout.

«pageBreakNotLast» Insert a page break at this location in the document unless we have
finished repeating the current repeating section. This is only valid
within a repeating section.

«columnBreakNotLast» Insert a column break at this location in the document unless we have
finished repeating the current repeating section. This is only valid
within a repeating section and within a page layout that is multi-
column.

For example, a template section repeating person details and desiring to put each person
on a separate page could look like this:

Page 38 Docmosis Template Guide Template Guide
Version 3.1

May 2014

3 Applying a Renderer

To enhance the presentation of your documents, you can apply a “renderer” to the field.
This allows various changes to be made to the field including:

 changing the background colour (if in a table cell);

 changing the font style to bold, italics or underline.

 changing the text to be displayed

To associate a renderer with a field, you use the renderer qualifier with the name of the
renderer that is to be used. The Java code supplying the data will also be responsible for
supplying the renderer (which is described in the Docmosis Developer’s Reference). The
only requirement in the template is to associate the renderer with the applicable field.
For example:

{renderer=myrenderer}

The field with the renderer would look something like this:

«surname{renderer=myrenderer}»

Note

Remember, you don’t need to use a renderer qualifier if you want a cell to be permanently shaded.
Renderers allow changes based on conditions that exist during document generation.

Tip

You can set the background colour of a cell with no data by using an element whose name has no
equivalent (and thus no data) in the application, or by using a field named dummy.

Important

To enable the qualifier to work, you must make sure that you edit the code of the field and not the
display name/result.

Important

Make sure there are no spaces in the field name or qualifier. Spaces may cause the qualifier to not be
recognised, particularly if using Word for the template source. If a space is required, use the
underscore character (_).

Docmosis Template Guide Page 39
Version 3.1
May 2014

Docmosis Template Guide

3.1.1 Renderer Parameters

Renderers may also be passed parameters so that the same renderer can be given
different directives depending on the case at hand. For example, the following fields pass
different parameters to the renderer named myrenderer:

«surname{renderer=myrenderer(‘strict’)}»

«surname{renderer=myrenderer(‘bold’,’relaxed’)}»

The first sends a “strict” parameter to myrenderer, whilst the second sends “bold” and
“relaxed”. myrenderer is written in Java code and may respond to these parameters as it
sees fit.

3.1.2 Built In Date Renderer

Docmosis has a built in date renderer which is available to all templates without requiring
any Java code. To use it simply reference a renderer named “date”. It will format the
date in the default format (dd MMM yyyy) or as indicated by a single parameter. The
parameter is in the format specified by the Java SimpleDateFormat class which is
described in the Java API Specification. Some examples of suitable formats are shown
below. The full documentation for SimpleDateFormat can be read on-line at
http://java.sun.com/reference/api/ and navigating into the J2SE version of your choice.

The date formatter only applies to date-typed data as comes from Java objects or
database queries.

The following example uses the built in date renderer to format a birthdate field into a
two-letter year format:

«birthdate{renderer=date(‘yy’)}»

To allow for formats that include a space, the underscore character (_) is transcribed
automatically into a space. This is done since fields cannot contain spaces when using
Word as the template source. To include an underscore, the backslash character can be
used to indicate that the underscore should be left as an underscore (_).

The table below shows some examples of date formatting:

Example Field Result

«birthdate{renderer=date}» 27 May 2009
«birthdate{renderer=date(‘E_MMM_yyyy’)}» Wed May 2009
«birthdate{renderer=date(‘yyyy’)}» 2009
«birthdate{renderer=date(‘dd/MM/yyyy’)}» 27/05/2009

To attach a renderer to a field (MS Word):

1. Select the element in the required table cell.

2. Right-click and select Edit Field from the context menu (or toggle the field code in
earlier versions of Word using Shift-F9 or Alt-F9)

Page 40 Docmosis Template Guide Template Guide
Version 3.1

May 2014

http://java.sun.com/reference/api/

3. Add the renderer qualifier inside curly braces to the element name.

4. If you are using the Edit Field dialog Click OK (or toggle the field code back using
Shift-F9 or Alt-F9).

5. If you don’t want to see the qualifier in the field result, delete it directly in the field.

6. If you have already created repeating rows or row groups in a table, repeat steps 1
through 5 for each row or group.

To attach a renderer to a field (OpenOffice.org Writer):

1. Select the element in the required table cell.

Note

Don’t left-click on the field with the mouse. You won’t be able to change the field code in the
Input Field dialog box.

2. Select Edit > Fields. The Fields dialog box is displayed.

Tip

You can also right-click the field and select Fields from the context menu.

3. In the References text box, add the renderer qualifier inside curly braces (as shown
earlier).

4. Click OK.

5. If you have already created repeating rows or row groups in a table, repeat steps 1
through 4 for each row or group.

3.1.3 Built In Boolean Renderer

Docmosis can format boolean (true/false) data into several presentational styles using the
built-in “boolean” renderer. This renderer exists since true/false can often be better
displayed in a document by Yes/No, Y/N, tick/cross etc.

The built-in Boolean render takes a single parameter indicating the way the true and false
values should be displayed. The following table lists the built in values that may be
passed as a parameter.

Parameter Effect

No parameter true is rendered as "true" and false as "false"

"yn" true is rendered as "Y" and false as "N"

"ynlc" true is rendered as "y" and false as "n" (lower case)

"yesnouc" true is rendered as "YES" and false as "NO" (upper case)

"yesnolc" true is rendered as "yes" and false as "no"

"yesno" true is rendered as "Yes" and false as "No" (mixed case)

"wingdings1" true is rendered as a wingdings tick and false as a cross

Docmosis Template Guide Page 41
Version 3.1
May 2014

Docmosis Template Guide

"wingdings2" true is rendered as a wingdings checkbox ticked and false as unticked

"dingbats1" true is rendered as a dingbats light tick and false as a light cross

"dingbats2" true is rendered as a dingbats heavy tick and false as a heavy cross

For example, to use the yn Boolean renderer, a field may attach a renderer named
“boolean” and give it the ‘yn’ parameter:

«isRetired{renderer=boolean(‘yn’)}»

Which will render true as Y and false as N.

3.1.3.1 Using the Wingdings Boolean Renderer

The wingdings renderers are unlike the other forms of renderers in that they rely on the
template field actually being in the wingdings font in the first place. This means you
would create the fields as required:

Then change the font of the fields that are using the wingdings renderer to the wingdings
font:

Page 42 Docmosis Template Guide Template Guide
Version 3.1

May 2014

When this document is then rendered, the renderer will place the correct wingdings
characters into the document.

Important

Using specific fonts may cause issues if you then migrate your system to another platform. You should
alwaysd confirm the operation of your template in all its intended system environments.

To insert a formatted boolean value element:

9. Insert the element using the basic element procedure (see page 18).

10. When you are happy that the element is correct, select it and format its characters
using the font you require for the resulting symbol.

11. Work with the application developer to ensure that the Docmosis data formatter
returns the appropriate character values for the true and false conditions.

3.1.3.2 Using the Dingbats Boolean Renderer

The Boolean renderer also provides the ability to render dingbats character replacements.
Using dingbats does not require any changes to fonts in the templates as is required for
the wingdings formatter.

You may find that Word does not understand the dingbats characters, so if you choose
Word as the output document type, you typically would not use dingbats character
renderers. The dingbat Boolean renderer can be used with Word or Writer templates, the
effect is only an issue in the output document.

Docmosis Template Guide Page 43
Version 3.1
May 2014

	1 Introduction
	1.1 Separating content from presentation
	1.2 What are templates?
	1.3 Where are the templates stored?
	1.4 How does document generation work?
	1.5 Template features
	1.5.1 General features
	1.5.2 Advanced features
	1.5.3 Docmosis elements
	1.5.3.1 Field Reference
	1.5.3.2 Expressions
	1.5.3.3 Nesting
	1.5.3.4 Range Specifiers
	1.5.3.5 Built-In Variables
	1.5.3.6 Error Handling

	2 Developing Docmosis templates
	2.1 Incorporating Docmosis elements
	2.2 Using Plain Text Mark-Up
	2.3 Using Document Fields As Mark-Up
	2.3.1 About MS Word versions
	2.3.2 To Insert A Field Using MS Word
	2.3.3 To Insert A Field Using Open Office / Libre Office Writer

	2.4 Basic text elements
	2.5 Images
	2.6 Active Hyperlinks
	2.7 Conditional sections
	2.8 Repeating sections
	2.8.1 "Stepping" in Repeating Sections

	2.9 Tables
	2.9.1 Conditional rows
	2.9.2 Repeating rows
	2.9.3 Conditional columns
	2.9.4 Advanced table structures

	2.10 Lists
	2.11 Merging Templates Together
	2.11.1 Direct Referencing
	2.11.2 Indirect Referencing
	2.11.3 Templates in Different Locations
	2.11.4 When A Template Cannot Be Found
	2.11.5 Limitations
	2.11.5.1 Headers and Footers
	2.11.5.2 Performance
	2.11.5.3 Styling Limitations

	2.12 Page and Other Breaks

	3 Applying a Renderer
	3.1.1 Renderer Parameters
	3.1.2 Built In Date Renderer
	3.1.3 Built In Boolean Renderer
	3.1.3.1 Using the Wingdings Boolean Renderer
	3.1.3.2 Using the Dingbats Boolean Renderer

