
Docmosis v2.0 Release Notes

New Features

Change
1 Table row repetition is now defined differently

The old “by-example” mechanism of copying rows is no longer supported.

Old way:
ID Value

«id» «value»
«id» «value»

New way:
ID Value

«rr_idRow»
«id» «value»

«er_idRow»

Notes:
1. The {section=qualifier} should be dropped from all merge fields in tables as

this information is now provided by the “rr_” tag.
2. The same nesting rules apply as for the previous by-example style but the

new mechanism is easier to work out complex structures
3. Alternating row colouring can now be specified by the template instead of

calling to a renderer (though renderers can still override the colour from the
template). The background colour of the rr_ row is used as the even row
colour and the background colour of each template row within the rr_section
provides the odd row colour. Thus the above example would render like this:

ID Value
1 Alpha
2 Beta
3 Gamma
4 Omega

More complex colour alternation is possible:
ID Value

«rr_idRow»
«id» «value»
«id» «value»

«er_idRow»

Would render as:
ID Value

1 Alpha
1 Alpha
2 Beta
2 Beta
3 Gamma
3 Gamma
4 Omega
4 Omega

4. Borders can now be styled from the template. The rr_ row provides the top
border for the first row and the er_ row provides the bottom border for the
last row. This allows bounding boxes etc to be generated by simply
bounding the rows as desired:

ID Value
«rr_idRow»

«id» «value»
«er_idRow»

Would render as:

ID Value
1 Alpha
2 Beta
3 Gamma
4 Omega

5. Colouring and border styling are prototyped from the rr_ and er_ rows as
mentioned. This applies on a cell-by-cell basis if your content rows have the
same number of columns as the rr_ and er_ rows. Otherwise a best-effort is
done.

2 Template Errors to Output Document

Wherever possible, errors during analysis and population of templates are sent to the
resulting document and highlighted, rather than throwing an exception. The
following example shows an error trying to apply a renderer to the <<value>> field
in a table. The renderer failed with an ArrayIndexOutOfBoundsException in custom
code.

This behaviour can be disabled by setting the property:

 docmosis.populator.error.fatal=true

NOTE: this new style of error handling is progressive and currently doesn’t cover all
errors

3 Conditional Table Columns

Table columns can be flagged as conditional which will then be removed from the
document if the condition evaluates to false.
This is controlled by a merge field with the prefix cc_, such as “cc_abc”.
Expressions and variables are now supported so this form of conditioning expression
are also supported “cc_{$columns<2}”. [Variables and expressions are introduced
in notes to follow]. For example:

ID Value «cc_hasPrimeValues»
«rr_idRow»

«id» «value»
«er_idRow»

The second column will be removed if the data source returns a false for
“hasPrimeValues”. Note that if your table has rows with differing numbers of
columns then this will always remove the column at the same relative location from
the left as the marked column.

This goes a bit further in that the condition will also be applied to sub (or covered)
columns. Consider this table:

ID Value «cc_hasPrimeValues»
«rr_idRow»

«id» «value1» «value2» «value3»
«er_idRow»

The three columns under the Value heading are “covered” by the Value column. As

such, these columns will also be removed if the value column is removed.

4 Variables

Simple variables can be defined in the template and be referenced later. Defining a
variable requires a merge field of the form $var=term. For example:

«$a=hotels.floors[1]»

defines a variable named “a” which holds reference to the value for the second floor
of a hotel. This variable may then be referenced later, for example this will get the
name of the floor:

«$a.floorName»

and this will repeat over all the rooms in the floor:

«rs_$a.rooms»
 «roomNumber»
«es_$a.rooms»

NOTE: support for literal values and expressions when setting variables is pending.

5 Built In Variables

There are some built-in variables to help with referencing data within or without the
“current” context of data.

Variable Description
$current
$this

Current data context. Allowed unnamed types of
data to be referenced such as arrays or collections of
Java primitives. For example, $current[0] might
reference the first string in an array of strings

$top
$root

The root of the data – regardless of where in the
population phase the render process is, the data can
be absolutely referenced.

$parent The data one level up from the current population
context. For example, in a table row that is
populating rooms of a floor in a repeating fashion,
the $parent variable would refer to the parent of the
rooms container, which is likely to be the current
floor.

$idx Current population index, that is, index into the
current data set.

$itemnum Current item number which is the position within
the current data set where the starting position is 1.

$size The size of the current data set.

6 Expression Support

Expressions can now be used for conditional sections and conditional columns. The
format of an expression is:

«cs_{expr}» or «cc_{expr}»

where supported expressions are:
Expression Description
{a<b} Lookup data “b” less than lookup of data “a”
{$a<b} Lookup variable “a” less than lookup of data “b”
{a=’123’} Lookup data “a” equals String literal “123”
{b!=123} Lookup data “b” is not equal to Number literal 123
{!c} Lookup data “c” and logically negate it
{!$a} Lookup variable “a” and logically negate it

Examples are:
«cc_{$columns<10}»
«cs_{roomNumber<101}»

7 Enhanced Range Specification

Ranges can now be specified so that parts of arrays or collections of data may be
referenced. For example:

Field Description
«rooms[0]» First room
«rooms[F]» First room
«rooms[L]» Last room
«rooms[L3]» First 3 rooms
«rooms[F2,L2]» First 2 rooms and last 2 rooms
«rooms[1-3]» 2nd to 4th room
«rooms[1,3,L2]» 2nd, 4th and last 2 rooms
«rooms[1-L2]» 2nd to second last rooms
«rooms[*]» All rooms

8 Automatic Template Registration

Paths can now be configured to be automatically monitored for templates and
template changes. The properties:

docmosis.template.monitor.sourcepath=path1;path2...
docmosis.template.monitor.period=5

if set will automatically watch for templates and register them according to their file
name and relative location.

NOTE: templates in jar files are also supported.

9 Simplified Data Provision

All collecting of data to provide to Docmosis should now be performed via the
DataProviderBuilder class. This class allows all forms of data to be attached,
without needing to know anything about the underlying implementations.

So, to provide data from some a combination of Java objects, a few strings of data
and an SQL query, the code might look like this:

 DataProviderBuilder dpb = new DataProviderBuilder();
 dpb.addJavaObject(myFriend);
 dpb.addJavaObject(myUncle);
 dpb.add(“reportTitle”, “Associate Report”);
 dpb.add(“footerLabel”, “Associate Report as at ” + myDateStr);
 dpb.addSQL(myResultSet);
 …
 DataProvider dataProvider = dpb.getDataProvider();

10 Simplified Template Identification

All types of TemplateIdentifier are now represented by the TemplateIdentifier class.
All other classes have been remove. The same applies to TemplateContext which
now assumes all contexts can be defined by a “/” separated “path”.

Templates can now be identified with or without a Context and if no Context is
provided, the template is assumed to be at the root of the template store.

So, to identify a template, we now do:

 TemplateIdentifier tid = new TemplateIdentifier(“myTemplate”);
Or
 TemplateIdentifier tid = new TemplateIdentifier(“myTemplate”,
“project1/release1”);

11 Simplified Rendering

DocumentProcessor has a new simplified method for rending a template that takes a
source template file, a destination file and the data source and performs the other
tasks automatically. This means the following code is sufficient to render any
template (without any data in this case):

 File template = new File(“myTemplate.doc”);
 File result = new File(“output/myDocument.pdf”);
 DataProvider data = new DataProviderBuilder().getDataProvider();
 DocumentProcessor.renderDoc(template, result, data);

12 Improved Core Performance

The core engine has had several improvements to reduce processing effort during
document production including:

• A new cache that holds ready-to-render templates in memory (default
configuration is 5Mb)

• Complex data lookup structures are pre-computed in the template
registration phase.

API Changes
The following API changes should be noted
Class / Interface Change
ConversionInstruction Interface changed into Class
SimpleConversionInstruction Replaced with ConversionInstruction
FileTemplateContext Replaced with TemplateContext
FileTemplateIdentifier Replaced with TemplateIdentifier
TemplateContext Interface changed to class
TemplateIdentifier Interface changed to class
FieldDetails Package change
RenderedField Package change. Changed from Interface to class
SimpleRenderedField Replaced by RenderedField
FieldRenderer Package change

Bug Fixes / Technical Enhancements
Change
1 Fixed a small memory leak that can occur when generating over 50000 documents

without restarting a Docmosis converter.
2 Fixed an unhelpful error that occurs when renderers are not used correctly.
3 Fixed an unhelpful error that occurs when reflective data providers are not used

correctly.
4 SQL Data Providers now handle all the different SQL data types.
5 Booleans and Strings can be treated interchangeably. Affects only String and File

based data provision (not Reflective or SQL data).
6 Increased reliability of start-end tag matching despite styling in the document.

	Docmosis v2.0 Release Notes
	New Features
	Table row repetition is now defined differently
	Template Errors to Output Document
	Conditional Table Columns
	Variables
	Built In Variables
	Expression Support

	Enhanced Range Specification
	Automatic Template Registration
	Simplified Data Provision
	Simplified Template Identification
	Simplified Rendering
	Improved Core Performance

	API Changes
	Bug Fixes / Technical Enhancements

